Tags: NEGF

Description

The non-equilibrium Greens function (NEGF) formalism provides a powerful conceptual and computational framework for treating quantum transport in nanodevices. It goes beyond the Landauer approach for ballistic, non-interacting electronics to include inelastic scattering and strong correlation effects at an atomistic level.

Check out Supriyo Datta's NEGF page for more information, or browse through the various resources listed below.

Online Presentations (61-71 of 71)

  1. Nanoscale Transistors: Advanced VLSI Devices (Introductory Lecture)

    20 Apr 2006 | Online Presentations | Contributor(s): Mark Lundstrom

    Welcome to the ECE 612 Introductory/Overview lecture. This course examines the device physics of advanced transistors and the process, device, circuit, and systems considerations that enter into...

    https://nanohub.org/resources/1236

  2. Molecular Transport Structures: Elastic Scattering, Vibronic Effects and Beyond

    13 Feb 2006 | Online Presentations | Contributor(s): Mark A. Ratner, Abraham Nitzan, Misha Galperin

    Current experimental efforts are clarifying quite beautifully the nature of charge transport in so-called molecular junctions, in which a single molecule provides the channel for current flow...

    https://nanohub.org/resources/1018

  3. A Top-Down Introduction to the NEGF Approach

    11 Jan 2006 | Online Presentations | Contributor(s): Mark Lundstrom

    A Top-Down Introduction to the NEGF Approach

    https://nanohub.org/resources/934

  4. Bandstructure in Nanoelectronics

    01 Nov 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material...

    https://nanohub.org/resources/381

  5. Simple Theory of the Ballistic MOSFET

    19 Oct 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    Silicon nanoelectronics has become silicon nanoelectronics, but we still analyze, design, and think about MOSFETs in more or less in the same way that we did 30 years ago. In this talk, I...

    https://nanohub.org/resources/491

  6. Parallel Computing for Realistic Nanoelectronic Simulations

    26 Sep 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    Typical modeling and simulation efforts directed towards the understanding of electron transport at the nanometer scale utilize single workstations as computational engines. Growing understanding...

    https://nanohub.org/resources/191

  7. Review of Several Quantum Solvers and Applications

    29 Aug 2005 | Online Presentations | Contributor(s): Umberto Ravaioli

    Review of Several Quantum Solvers and Applications

    https://nanohub.org/resources/413

  8. Numerical Aspects of NEGF: The Recursive Green Function Algorithm

    20 Aug 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    Numerical Aspects of NEGF: The Recursive Green Function Algorithm

    https://nanohub.org/resources/165

  9. Huckel-IV on the nanoHub

    16 Feb 2005 | Online Presentations | Contributor(s): Magnus Paulsson, Ferdows Zahid, Supriyo Datta

    Huckel-IV on the nanoHub

    https://nanohub.org/resources/422

  10. Understanding Molecular Conduction

    15 Feb 2005 | Online Presentations | Contributor(s): Supriyo Datta

    It is common to differentiate between two ways of building a nanodevice: a topdown approach where we start from something big and chisel out what we want and a bottom-up approach where we start...

    https://nanohub.org/resources/495

  11. NEMO 1-D: The First NEGF-based TCAD Tool and Network for Computational Nanotechnology

    04 Nov 2004 | Online Presentations | Contributor(s): Gerhard Klimeck

    Nanotechnology has received a lot of public attention since U.S. President Clinton announced the U.S. National Nanotechnology Initiative. New approaches to applications in electronics,...

    https://nanohub.org/resources/178