
A Quantum Mechanical Analysis of Channel Access Geometry and Series Resistance in Nanoscale Transistors
19 Oct 2006   Contributor(s):: Ramesh Venugopal, Sebastien Goasguen, Supriyo Datta, Mark Lundstrom
In this paper, we apply a twodimensional quantum mechanical simulation scheme to study the effect of channel access geometries on device performance. This simulation scheme solves the nonequilibrium Green’s function equations selfconsistently with Poisson’s equation and treats the effect of...

A ThreeDimensional Quantum Simulation of Silicon Nanowire Transistors with the EffectiveMass Approximation
30 Oct 2006   Contributor(s):: Jing Wang, POLIZZI ERIC, Mark Lundstrom
The silicon nanowire transistor (SNWT) is a promising device structure for future integrated circuits, and simulations will be important for understanding its device physics and assessing its ultimate performance limits. In this work, we present a threedimensional quantum mechanical simulation...

Application of the Keldysh Formalism to Quantum Device Modeling and Analysis
14 Jan 2008   Contributor(s):: Roger Lake
The effect of inelastic scattering on quantum electron transport through layered semiconductor structures is studied numerically using the approach based on the nonequilibrium Green's function formalism of Keldysh, Kadanoff, and Baym. The Markov assumption is not made, and the energy coordinate...

Carbon Nanotube Electronics: Modeling, Physics, and Applications
27 Jun 2013   Contributor(s):: Jing Guo
In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias transport can be nearly ballistic across distances of several hundred nanometers. Deposition of highk gate...

Carbon Nanotube Electronics: Modeling, Physics, and Applications
30 Oct 2006   Contributor(s):: Jing Guo
In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias transport can be nearly ballistic across distances of several hundred nanometers. Deposition of highκ gate...

Device Physics and Simulation of Silicon Nanowire Transistors
28 Sep 2006   Contributor(s):: Jing Wang
As the conventional silicon metaloxidesemiconductor fieldeffect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

Device Physics and Simulation of Silicon Nanowire Transistors
20 May 2006   Contributor(s):: Jing Wang
As the conventional silicon metaloxidesemiconductor fieldeffect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

Device Physics Studies of IIIV and Silicon MOSFETS for Digital Logic
25 Jun 2013   Contributor(s):: Himadri Pal
IIIV's are currently gaining a lot of attraction as possible MOSFET channel materials due to their high intrinsic mobility. Several challenges, however, need to be overcome before IIIV's can replace silicon (Si) in extremely scaled devices. The effect of low densityofstates of IIIV materials...

Dissipative Quantum Transport in Semiconductor Nanostructures
23 Dec 2011   Contributor(s):: Peter Greck
In this work, we investigate dissipative quantum transport properties of an open system. After presenting the background of ballistic quantum transport calculations, a simple scattering mechanism, called Büttiker Probes, is introduced. Then, we assess the properties of the Büttiker Probe model...

Efficiency Enhancement for Nanoelectronic Transport Simulations
01 Feb 2014   Contributor(s):: Jun Huang
PhD thesis of Jun HuangContinual technology innovations make it possible to fabricate electronic devices on the order of 10nm. In this nanoscale regime, quantum physics becomes critically important, like energy quantization effects of the narrow channel and the leakage currents due to tunneling....

Electrical Conduction through Molecules
08 Jul 2003   Contributor(s):: Ferdows Zahid, Magnus Paulsson, Supriyo Datta
In recent years, several experimental groups have reported measurements of the currentvoltage (IV) characteristics of individual or small numbers of molecules. Even threeterminal measurements showing evidence of transistor action has been reported using carbon nanotubes as well as...

Electrical Resistance: an Atomistic View
26 Oct 2006   Contributor(s):: Supriyo Datta
This tutorial article presents a “bottomup” view of electrical resistance starting from something really small, like a molecule, and then discussing the issues that arise as we move to bigger conductors. Remark ably enough, no serious quantum mechanics is needed to understand electrical...

ElectronPhonon and ElectronElectron Interactions in Quantum Transport
14 Jan 2008   Contributor(s):: Gerhard Klimeck
The objective of this work is to shed light on electron transport through submicron semiconductor structures, where electronic state quantization, electronelectron interactions and electronphonon interactions are important. We concentrate here on the most developed vertical quantum device,...

Exploring New Channel Materials for Nanoscale CMOS
27 Jun 2013   Contributor(s):: Anisur Rahman
The improved transport properties of new channel materials, such as Ge and IIIV semiconductors, along with new device designs, such as dual gate, tri gate or FinFETs, are expected to enhance the performance of nanoscale CMOS devices. Novel process techniques, such as ALD, high# dielectrics, and...

Exploring New Channel Materials for Nanoscale CMOS
21 May 2006   Contributor(s):: Anisur Rahman
The improved transport properties of new channel materials, such as Ge and IIIV semiconductors, along with new device designs, such as dual gate, tri gate or FinFETs, are expected to enhance the performance of nanoscale CMOS devices.Novel process techniques, such as ALD, highk dielectrics, and...

Introduction to the Keldysh Nonequilibrium Green Function Technique
06 Oct 2006   Contributor(s):: A. P. Jauho
Keldysh nonequilibrium Green function technique is used very widely to describe transport phenomena in mesoscopic systems.The technique is somewhat subtle, and a rigorous treatment would require much more than we have at our disposal, see, for example, the textbookk by Haug and Jauho [1].The...

Modeling of Nanoscale Devices
19 Oct 2006   Contributor(s):: M. P. Anantram, Mark Lundstrom, Dmitri Nikonov
We aim to provide engineers with an introductionto the nonequilibriumGreen’s function (NEGF) approach, which is a powerful conceptual tool and a practical analysismethod to treat nanoscale electronic devices with quantum mechanicaland atomistic effects. We first review the basis for the...

Modeling Quantum Transport in Nanoscale Transistors
30 Oct 2006   Contributor(s):: ramesh venugopal
As critical transistor dimensions scale below the 100 nm (nanoscale) regime, quan tum mechanical effects begin to manifest themselves and affect important device performance metrics. Therefore, simulation tools which can be applied to design nanoscale transistors in the future, require new...

Modular Approach to Spintronics
28 Apr 2015   Contributor(s):: Kerem Yunus Camsari
There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an everincreasing set of building...

Multidimensional nanoscale device modeling: the finite element method applied to the nonequilibrium Green's function formalism
31 Oct 2006   Contributor(s):: POLIZZI ERIC, Supriyo Datta
This work deals with the modeling and the numerical simulation of quantum transport in multidimensional open nanoscale devices. The electron transport in the device is described using the NonEquilibrium Green's Functions (NEGF) formalism and the variational form of the problem is solved using...