Tags: NEGF

Description

The non-equilibrium Greens function (NEGF) formalism provides a powerful conceptual and computational framework for treating quantum transport in nanodevices. It goes beyond the Landauer approach for ballistic, non-interacting electronics to include inelastic scattering and strong correlation effects at an atomistic level.

Check out Supriyo Datta's NEGF page for more information, or browse through the various resources listed below.

All Categories (141-160 of 211)

  1. Nanoelectronic Modeling: From Quantum Mechanics and Atoms to Realistic Devices

    25 Jan 2010 | | Contributor(s):: Gerhard Klimeck

    The goal of this series of lectures is to explain the critical concepts in the understanding of the state-of-the-art modeling of nanoelectronic devices such as resonant tunneling diodes, quantum wells, quantum dots, nanowires, and ultra-scaled transistors. Three fundamental concepts critical to...

  2. Nanoelectronic Modeling: Multimillion Atom Simulations, Transport, and HPC Scaling to 23,000 Processors

    07 Mar 2008 | | Contributor(s):: Gerhard Klimeck

    Future field effect transistors will be on the same length scales as “esoteric” devices such as quantum dots, nanowires, ultra-scaled quantum wells, and resonant tunneling diodes. In those structures the behavior of carriers and their interaction with their environment need to be fundamentally...

  3. Nanoelectronics and the Meaning of Resistance

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    The purpose of this series of lectures is to introduce the "bottom-up" approach to nanoelectronics using concrete examples. No prior knowledge of quantum mechanics or statistical mechanics is assumed; however, familiarity with matrix algebra will be helpful for some topics. Day 1: What...

  4. Nanoelectronics and the meaning of resistance: Course Handout and Exercises

    02 Sep 2008 | | Contributor(s):: Supriyo Datta

    Handout with reference list, MATLAB scripts and exercise problems.

  5. nanoHUB-U: Fundamentals of Nanoelectronics - Part B: Quantum Transport, 2nd Edition

    Courses|' 28 May 2015

    Second in a two part series, this nanotechnology course provides an introduction to more advanced topics, including the Non-Equilibrium Green’s Function (NEGF) method widely used to analyze quantum...

    https://nanohub.org/courses/FON2

  6. nanoMOS 2.0: A Two -Dimensional Simulator for Quantum Transport in Double-Gate MOSFETs

    06 Oct 2006 | | Contributor(s):: Zhibin Ren, Ramesh Venugopal, Sebastien Goasguen, Supriyo Datta, Mark Lundstrom

    A program to numerically simulate quantum transport in double gate MOSFETs is described. The program uses a Green’s function approach and a simple treatment of scattering based on the idea of so-called Büttiker probes. The double gate device geometry permits an efficient mode space approach that...

  7. NanoMOS 2.5 Source Code Download

    22 Feb 2005 | | Contributor(s):: Zhibin Ren, Sebastien Goasguen

    NanoMOS is a 2-D simulator for thin body (less than 5 nm), fully depleted, double-gated n-MOSFETs. A choice of five transport models is available (drift-diffusion, classical ballistic, energy transport, quantum ballistic, and quantum diffusive). The transport models treat quantum effects in the...

  8. NanoMOS 3.0: First-Time User Guide

    06 Jun 2006 | | Contributor(s):: Kurtis Cantley, Mark Lundstrom

    This tutorial is an introduction to the nanoMOS simulation tool for new users. Descriptions of input and output parameters are included, along with new features associated with the Rappture interface. There are also descriptions of nine examples that are loadable in the new version to help the...

  9. Nanoscale Device Modeling: From MOSFETs to Molecules

    20 Sep 2006 | | Contributor(s):: Prashant Subhash Damle

    This thesis presents a rigorous yet practical approach to model quantum transport in nanoscale electronic devices.As convetional metal oxide semiconductor devices shrink below the one hundred nanometer regime, quantum mechanical effects are beginning to play an increasingly important role in...

  10. Nanoscale MOSFETs: Physics, Simulation and Design

    26 Oct 2006 | | Contributor(s):: Zhibin Ren

    This thesis discusses device physics, modeling and design issues of nanoscale transistors at the quantum level. The principle topics addressed in this report are 1) an implementation of appropriate physics and methodology in device modeling, 2) development of a new TCAD (technology computer aided...

  11. Nanoscale Transistors: Advanced VLSI Devices (Introductory Lecture)

    20 Apr 2006 | | Contributor(s):: Mark Lundstrom

    Welcome to the ECE 612 Introductory/Overview lecture. This course examines the device physics of advanced transistors and the process, device, circuit, and systems considerations that enter into the development of new integrated circuit technologies.

  12. NanoTCAD ViDES

    24 Jul 2008 | | Contributor(s):: Gianluca Fiori, Giuseppe Iannaccone

    3D Poisson/NEGF solver for the simulation of Graphene Nanoribbon, Carbon nanotubes and Silicon Nanowire Transistors.

  13. Nanotechnology Animation Gallery

    20 Apr 2010 | | Contributor(s):: Saumitra Raj Mehrotra, Gerhard Klimeck

    Animations and visualization are generated with various nanoHUB.org tools to enable insight into nanotechnology and nanoscience. Click on image for detailed description and larger image download. Additional animations are also...

  14. Nanowire

    19 May 2006 | | Contributor(s):: Hong-Hyun Park, Lang Zeng, Matthew Buresh, Siqi Wang, Gerhard Klimeck, Saumitra Raj Mehrotra, Clemens Heitzinger, Benjamin P Haley

    Simulate 3D nanowire transport in the effective mass approximation with phonon scattering and 3D Poisson self-consistent solution

  15. Nartowt,bradley Joseph

    https://nanohub.org/members/122944

  16. naveen kaushik

    https://nanohub.org/members/83665

  17. NEMO 1-D: The First NEGF-based TCAD Tool and Network for Computational Nanotechnology

    28 Dec 2004 | | Contributor(s):: Gerhard Klimeck

    Nanotechnology has received a lot of public attention since U.S. President Clinton announced the U.S.National Nanotechnology Initiative. New approaches to applications in electronics, materials,medicine, biology and a variety of other areas will be developed in this new multi-disciplinary...

  18. NEMO5, a Parallel, Multiscale, Multiphysics Nanoelectronics Modeling Tool

    16 Sep 2016 | | Contributor(s):: Gerhard Klimeck

    The Nanoelectronic Modeling tool suite NEMO5 is aimed to comprehend the critical multi-scale, multi-physics phenomena and deliver results to engineers, scientists, and students through efficient computational approaches. NEMO5’s general software framework easily includes any kind of...

  19. NEMO5, a Parallel, Multiscale, Multiphysics Nanoelectronics Modeling Tool: From Basic Physics to Real Devices and to Global Impact on nanoHUB.org

    10 Nov 2016 | | Contributor(s):: Gerhard Klimeck

    The Nanoelectronic Modeling tool suite NEMO5 is aimed to comprehend the critical multi-scale, multi-physics phenomena and deliver results to engineers, scientists, and students through efficient computational approaches. NEMO5’s general software framework easily includes any kind of...

  20. Niger Sultana Mimi

    Self motivated learner.

    https://nanohub.org/members/185634