Tags: quantum mechanics


Quantum mechanics (QM), also known as quantum physics or quantum theory, is a branch of physics providing a mathematical description of much of the dual particle-like and wave-like behavior and interactions of energy and matter. It departs from classical mechanics primarily at the atomic and subatomic scales, the so-called quantum realm. In advanced topics of QM, some of these behaviors are macroscopic and only emerge at very low or very high energies or temperatures.

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum mechanics can be found here.

Online Presentations (1-20 of 30)

  1. Application-driven Co-Design: Using Proxy Apps in the ASCR Materials Co-Design Center

    31 May 2012 | | Contributor(s):: Jim Belak

    Computational materials science is performed with a suite of applications that span the quantum mechanics of interatomic bonding to the continuum mechanics of engineering problems and phenomenon specific models in between. In this talk, we will review this suite and the motifs used in each of...

  2. Bringing Quantum Mechanics to Life: From Schrödinger's Cat to Schrödinger's Microbe

    01 Nov 2016 | | Contributor(s):: Tongcang Li

    In this talk, I will first give a brief introduction to basic concepts in quantum mechanics and the Schrödinger's cat thought experiment. I will then review developments in creating quantum superposition and entangled states and the realization of quantum teleportation. Non-trivial quantum...

  3. Development of the ReaxFF reactive force fields and applications to combustion, catalysis and material failure

    12 Sep 2011 | | Contributor(s):: Adri van Duin

    This lecture will describe how the traditional, non-reactive FF-concept can be extended for application including reactive events by introducing bond order/bond distance concepts. Furthermore, it will address how these reactive force fields can be trained against QM-data, thus greatly enhancing...

  4. Dynamics of Quantum Fluids: Path integral and Semiclassical Methods

    21 May 2008 | | Contributor(s):: Nancy Makri

    The interplay of many-body nonlinear interactions and quantum mechanical effects such as zero-point motion or identical particle exchange symmetries lead to intriguing phenomena in low-temperature fluids, some of which remain poorly understood. Recent advances in theory and methodology have...

  5. E304 L3.1.2: Nanoscale Physics - Planck's Contribution to Quantum Mechanics

    26 Feb 2016 |

  6. E304 L5.2.1: Nanomechanics - Quantum Mechanics of Oscillation

    29 Mar 2016 | | Contributor(s):: Elena Nicolescu Veety

  7. ECE 606 Lecture 2: Quantum Mechanics

    31 Aug 2012 | | Contributor(s):: Gerhard Klimeck

  8. ECE 606 Lecture 3: Elements of Quantum Mechanics

    28 Jan 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Why do we need quantum physicsQuantum conceptsFormulation of quantum mechanicsConclusions

  9. ECE 606 Lecture 4: Periodic Potentials Solutions of Schrödinger's Equation

    14 Sep 2012 | | Contributor(s):: Gerhard Klimeck

  10. ECE 606 Lecture 4: Solution of Schrodinger Equation

    04 Feb 2009 | | Contributor(s):: Muhammad A. Alam

    Outline:Time-independent Schrodinger EquationAnalytical solution of toy problemsBound vs. tunneling statesConclusionsAdditional Notes: Numerical solution of Schrodinger Equation

  11. ECE 612 Lecture 4: Polysilicon Gates/QM Effects

    12 Sep 2008 | | Contributor(s):: Mark Lundstrom

    Outline: 1) Review, 2) Workfunctionof poly gates,3) CV with poly depletion,4) Quantum mechanics and VT,5) Quantum mechanics and C,6) Summary.

  12. Electrons in Two Dimensions: Quantum Corrals and Semiconductor Microstructures

    04 Dec 2007 | | Contributor(s):: Eric J. Heller

    The images generated by a scanning tunneling microscope are iconic. Some of the most famous are Don Eigler’s quantum corrals, which reveal not only the guest atoms on a surface but especially the interference patterns of electrons shuttling back and forth along the surface. To understand the...

  13. Finite Size Scaling and Quantum Criticality

    09 May 2007 | | Contributor(s):: Sabre Kais

    The study of quantum phase transitions, which are driven by quantum fluctuations as a consequence of Heisenberg's uncertainty principle, continues to be of increasing interest in the fields of condensed matter and atomic and molecular physics. In this field we have established an analogy between...

  14. Introduction to Quantum Dot Lab

    31 Mar 2008 | | Contributor(s):: Sunhee Lee, Hoon Ryu, Gerhard Klimeck

    The nanoHUB tool "Quantum Dot Lab" allows users to compute the quantum mechanical "particle in a box" problem for a variety of differentconfinement shapes, such as boxes, ellipsoids, disks, and pyramids. Users can explore, interactively, the energy spectrum and orbital shapes of new quantized...

  15. Lecture 1: The Wigner Formulation of Quantum Mechanics

    18 Nov 2014 | | Contributor(s):: Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the Wigner formulation of Quantum Mechanics which is based on the concept of quasi-distributions defined over the phase-space.

  16. Lecture 2: The Wigner Monte Carlo Method for Single-Body Quantum Systems

    18 Nov 2014 | | Contributor(s):: Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the Wigner Monte Carlo method applied to single-body quantum systems.

  17. Lecture 3: The Wigner Monte Carlo Method for Density Functional Theory

    18 Nov 2014 | | Contributor(s):: Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the Wigner Monte Carlo method in the framework of density functional theory (DFT).

  18. Lecture 4: The ab-initio Wigner Monte Carlo Method

    18 Nov 2014 | | Contributor(s):: Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the ab-initio Wigner Monte Carlo method for the simulation of strongly correlated systems.

  19. Lecture 5: Systems of Identical Fermions in the Wigner Formulation of Quantum Mechanics

    18 Nov 2014 | | Contributor(s):: Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses about systems of indistinguishable Fermions in the Wigner formulation of quantum mechanics.

  20. ME 597 Lecture 1: Introduction to Basic Quantum Mechanics

    01 Sep 2009 | | Contributor(s):: Ron Reifenberger

    Note: This lecture has been revised since its original presentation.Topics:Introduction to Basic Quantum MechanicsEnergy States in Periodic Crystals