Tags: quantum transport

Courses (1-10 of 10)

  1. Carrier Transport at the Nanoscale

    27 Nov 2007 | | Contributor(s):: Mark Lundstrom

    Fall 2007Note: A more current teaching of this course with online lectures is available as ECE 656: Electronic Transport in Semiconductors (Fall 2011).This is a course about how charge flows in semiconductors with an emphasis on transport at the nanoscale. After a brief review basic concepts,...

  2. CQT: Concepts of Quantum Transport

    30 Nov 2006 | | Contributor(s):: Supriyo Datta

    Note: For an expanded version of these lectures see Datta's 2008 NCN@Purdue Summer School presentations onNanoelectronics and the Meaning of Resistance.How does the resistance of a conductor change as we shrink its length all the way down to a few atoms? This is a question that has intrigued...

  3. Curriculum on Nanotechnology

    27 Jan 2005 |

    To exploit the opportunities that nanoscience is giving us, engineers will need to learn how to think about materials, devices, circuits, and systems in new ways. The NCN seeks to bring the new understanding emerging from research in nanoscience into the graduate and undergraduate curriculum....

  4. ECE 495N: Fundamentals of Nanoelectronics

    28 Aug 2008 | | Contributor(s):: Supriyo Datta

    Fall 2008This is a newly produced version of the course that wasformerly available.We would greatly appreciate your feedback regarding the new format and contents.Objective:To convey the basic concepts of nanoelectronics to electricalengineering students with no background in quantum mechanics...

  5. ECE 659 Quantum Transport: Atom to Transistor

    27 Jan 2009 | | Contributor(s):: Supriyo Datta

    Spring 2009This is a newly produced version of the course that wasformerly available.We would greatly appreciate your feedback regarding the new format and contents.Traditionally atomistic approaches have been used to model materials in terms of average parameters like the mobility or the...

  6. Nanoelectronic Devices, With an Introduction to Spintronics

    09 Sep 2010 | | Contributor(s):: Supriyo Datta, Mark Lundstrom

      Nanoelectronic devices are at the heart of today's powerful computers and are also of great interest for many emerging applications including energy conversion, sensing and alternative computing paradigms. Our objective, however, is not to discuss specific devices or...

  7. Nanoelectronic Modeling: From Quantum Mechanics and Atoms to Realistic Devices

    25 Jan 2010 | | Contributor(s):: Gerhard Klimeck

    The goal of this series of lectures is to explain the critical concepts in the understanding of the state-of-the-art modeling of nanoelectronic devices such as resonant tunneling diodes, quantum wells, quantum dots, nanowires, and ultra-scaled transistors. Three fundamental concepts critical to...

  8. Nanoelectronics and the Meaning of Resistance

    20 Aug 2008 | | Contributor(s):: Supriyo Datta

    The purpose of this series of lectures is to introduce the "bottom-up" approach to nanoelectronics using concrete examples. No prior knowledge of quantum mechanics or statistical mechanics is assumed; however, familiarity with matrix algebra will be helpful for some topics.Day 1: What and where...

  9. Quantum Transport: Atom to Transistor (Spring 2004)

    23 May 2006 | | Contributor(s):: Supriyo Datta

    Spring 2004Please Note: A newer version of this course is now available and we would greatly appreciate your feedback regarding the new format and contents.Course Information WebsiteThe development of "nanotechnology" has made it possible to engineer materials and devices on a length scale as...

  10. Tutorial 4: Far-From-Equilibrium Quantum Transport

    23 Mar 2011 | | Contributor(s):: Gerhard Klimeck

    These lectures focus on the application of the theories using the nanoelectronic modeling tools NEMO 1- D, NEMO 3-D, and OMEN to realistically extended devices. Topics to be covered are realistic resonant tunneling diodes, quantum dots, nanowires, and Ultra-Thin-Body Transistors.