Tags: scattering

Description

Scattering is a general physical process where some forms of radiation, such as light, sound, or moving particles, are forced to deviate from a straight trajectory by one or more localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections that undergo scattering are often called diffuse reflections and unscattered reflections are called specular(mirror-like) reflections.

Learn more about quantum dots from the many resources on this site, listed below. More information on Scattering can be found here.

Resources (21-40 of 70)

  1. ECE 656 Lecture 19: Scattering I - Collision Integral

    01 Nov 2011 | | Contributor(s):: Mark Lundstrom

    Outline:ReviewCollision operatorElectron-electron scatteringDiscussionSummary

  2. ECE 656 Lecture 20: Scattering II - Relaxation time approximation

    01 Nov 2011 | | Contributor(s):: Mark Lundstrom

    Outline:Justification of the RTADiscussionHW prob. 17

  3. ECE 656 Lecture 12: Scattering and Transmission

    30 Sep 2011 | | Contributor(s):: Mark Lundstrom

    Outline:IntroductionPhysics of carrier scatteringTransmission and mfpMFP and scatteringDiscussionSummary

  4. Computer Graphics Imagery for Motion Pictures and Commercial Advertising: The Achievement of Highly-Realistic Images

    19 Aug 2011 | | Contributor(s):: Kenneth Torrance

    The talk will review some of the underlying concepts from Radiation Heat Transfer that have now been implemented in synthetic images. In many cases, researchers in graphics have created algorithms that are many times faster and more detailed than the engineering algorithms from which they were...

  5. Lecture 10: Case study-Near-equilibrium Transport in Graphene

    19 Aug 2011 | | Contributor(s):: Mark Lundstrom

    Near-equilibrium transport in graphene as an example of how to apply the concepts in lectures 1-8.

  6. Lecture 9: Introduction to Phonon Transport

    17 Aug 2011 | | Contributor(s):: Mark Lundstrom

    This lecture is an introduction to phonon transport. Key similarities and differences between electron and phonon transport are discussed.

  7. Lecture 6: An Introduction to Scattering

    16 Aug 2011 | | Contributor(s):: Mark Lundstrom

    In this lecture, we show how the mean-free-path (mfp) is related to thetime between scattering events and briefly discuss how the scattering time is related to underlying physical processes.

  8. Coulomb Scattering

    11 Jul 2011 | | Contributor(s):: Dragica Vasileska

    This set of slides describes Coulomb Scattering.

  9. Alloy Disorder Scattering

    11 Jul 2011 | | Contributor(s):: Dragica Vasileska

    This set of slides describes Alloy disorder scattering.

  10. Electron-Electron Interactions

    20 Jun 2011 | | Contributor(s):: Dragica Vasileska

    This set of slides describes the electron-electron interactions scattering rates calculations as it occurs in bulk materials, low-dimensional structures and semiconductor devices.

  11. Tutorial 4a: High Bias Quantum Transport in Resonant Tunneling Diodes

    29 Mar 2011 | | Contributor(s):: Gerhard Klimeck

    Outline:Resonant Tunneling Diodes - NEMO1D: Motivation / History / Key InsightsOpen 1D Systems: Transmission through Double Barrier Structures - Resonant TunnelingIntroduction to RTDs: Linear Potential DropIntroduction to RTDs: Realistic Doping ProfilesIntroduction to RTDs: Relaxation Scattering...

  12. Tutorial 2: A Bottom-Up View of Heat Transfer in Nanomaterials

    23 Mar 2011 | | Contributor(s):: Timothy S Fisher

    This lecture provides a theoretical development of the transport of thermal energy by conduction in nanomaterials. The physical nature of energy transport by two carriers—electrons and phonons--will be explored from basic principles using a common Landauer framework. Issues including the quantum...

  13. Boltzmann Transport Equation and Scattering Theory

    01 Feb 2011 | | Contributor(s):: Dragica Vasileska

    In this presentation we give simple derivation of the Boltzmann transport equation, describe the derivation of Fermi's Golden Rule, and present the derivation of most common scattering mechanisms in semiconductors.

  14. 2010 Nano-Biophotonics Summer School @ UIUC Lecture 18 - Propagation, scattering and inverse scattering of evanescent fields

    13 Jan 2011 | | Contributor(s):: Paul Scott Carney

  15. 2010 Nano-Biophotonics Summer School @ UIUC Lecture 23 - Scattering, Absorbing, and Modulating Nanoprobes for Targeted Imaging and Therapy

    13 Jan 2011 | | Contributor(s):: Stephen Boppart

  16. Inelastic Scattering in NEGF: Matlab Implementation and Exercises

    02 Jan 2011 | | Contributor(s):: Samiran Ganguly, Supriyo Datta

    A set of Matlab scripts has been developed illustrating the treatment of inelastic scattering in non-equilibrium Greens function (NEGF) based quantum transport models. The first script highlights the core principles using a simple conductor described by a (2x2) Hamiltonian matrix, while the...

  17. Surface scattering: Made simple

    03 Sep 2010 | | Contributor(s):: Dmitri Nikonov, Himadri Pal

    Surface scattering in a quantum well.

  18. 2D Scattering Rates Calculation

    20 Jul 2010 | | Contributor(s):: Dragica Vasileska, David K. Ferry

    this set of slides describes the calculation of the 2D scattering rates in Q2DEG.

  19. Nanoelectronic Modeling Lecture 25a: NEMO1D - Full Bandstructure Effects

    07 Jul 2010 | | Contributor(s):: Gerhard Klimeck

    (quantitative RTD modeling at room temperature)

  20. ANGEL - A Nonequilibrium Green Function Solver for LEDs

    18 Jan 2010 | | Contributor(s):: sebastian steiger

    An MPI-parallelized implementation of 1-D NEGF for heterostructures. Includes off-diagonal scattering. Effective mass band structure for electrons and holes. The online tool only provides basic NEGF functionality without scattering.