Tags: scattering

Description

Scattering is a general physical process where some forms of radiation, such as light, sound, or moving particles, are forced to deviate from a straight trajectory by one or more localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections that undergo scattering are often called diffuse reflections and unscattered reflections are called specular(mirror-like) reflections.

Learn more about quantum dots from the many resources on this site, listed below. More information on Scattering can be found here.

Resources (41-60 of 81)

  1. Electron-Electron Interactions

    20 Jun 2011 | Contributor(s):: Dragica Vasileska

    This set of slides describes the electron-electron interactions scattering rates calculations as it occurs in bulk materials, low-dimensional structures and semiconductor devices.

  2. Tutorial 4a: High Bias Quantum Transport in Resonant Tunneling Diodes

    29 Mar 2011 | | Contributor(s):: Gerhard Klimeck

    Outline:Resonant Tunneling Diodes - NEMO1D: Motivation / History / Key InsightsOpen 1D Systems: Transmission through Double Barrier Structures - Resonant TunnelingIntroduction to RTDs: Linear Potential DropIntroduction to RTDs: Realistic Doping ProfilesIntroduction to RTDs: Relaxation Scattering...

  3. Tutorial 2: A Bottom-Up View of Heat Transfer in Nanomaterials

    23 Mar 2011 | | Contributor(s):: Timothy S Fisher

    This lecture provides a theoretical development of the transport of thermal energy by conduction in nanomaterials. The physical nature of energy transport by two carriers—electrons and phonons--will be explored from basic principles using a common Landauer framework. Issues including the quantum...

  4. Boltzmann Transport Equation and Scattering Theory

    01 Feb 2011 | | Contributor(s):: Dragica Vasileska

    In this presentation we give simple derivation of the Boltzmann transport equation, describe the derivation of Fermi's Golden Rule, and present the derivation of most common scattering mechanisms in semiconductors.

  5. 2010 Nano-Biophotonics Summer School @ UIUC Lecture 18 - Propagation, scattering and inverse scattering of evanescent fields

    13 Jan 2011 | | Contributor(s):: Paul Scott Carney

  6. 2010 Nano-Biophotonics Summer School @ UIUC Lecture 23 - Scattering, Absorbing, and Modulating Nanoprobes for Targeted Imaging and Therapy

    13 Jan 2011 | | Contributor(s):: Stephen Boppart

  7. Inelastic Scattering in NEGF: Matlab Implementation and Exercises

    02 Jan 2011 | | Contributor(s):: Samiran Ganguly, Supriyo Datta

    A set of Matlab scripts has been developed illustrating the treatment of inelastic scattering in non-equilibrium Greens function (NEGF) based quantum transport models. The first script highlights the core principles using a simple conductor described by a (2x2) Hamiltonian matrix, while the...

  8. Surface scattering: Made simple

    03 Sep 2010 | | Contributor(s):: Dmitri Nikonov, Himadri Pal

    Surface scattering in a quantum well.

  9. 2D Scattering Rates Calculation

    20 Jul 2010 | | Contributor(s):: Dragica Vasileska, David K. Ferry

    this set of slides describes the calculation of the 2D scattering rates in Q2DEG.

  10. Nanoelectronic Modeling Lecture 25a: NEMO1D - Full Bandstructure Effects

    07 Jul 2010 | | Contributor(s):: Gerhard Klimeck

    (quantitative RTD modeling at room temperature)

  11. ANGEL - A Nonequilibrium Green Function Solver for LEDs

    18 Jan 2010 | | Contributor(s):: sebastian steiger

    An MPI-parallelized implementation of 1-D NEGF for heterostructures. Includes off-diagonal scattering. Effective mass band structure for electrons and holes. The online tool only provides basic NEGF functionality without scattering.

  12. Nanoelectronic Modeling Lecture 23: NEMO1D - Importance of New Boundary Conditions

    02 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    One of the key insights gained during the NEMO1D project was the development of new boundary conditions that enabled the modeling of realistically extended Resonant Tunneling Diodes (RTDs). The new boundary conditions are based on the partitioning of the device into emitter and collector...

  13. Nanoelectronic Modeling Lecture 24: NEMO1D - Incoherent Scattering

    02 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    Incoherent processes due to phonons, interface roughness and disorder had been suspected to be the primary source of the valley current of resonant tunneling diodes (RTDs) at the beginning of the NEMO1D project in 1994. The modeling tool NEMO was created at Texas Instruments to fundamentally...

  14. Nanoelectronic Modeling Lecture 26: NEMO1D -

    02 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    NEMO1D demonstrated the first industrial strength implementation of NEGF into a simulator that quantitatively simulated resonant tunneling diodes. The development of efficient algorithms that simulate scattering from polar optical phonons, acoustic phonons, alloy disorder, and interface roughness...

  15. Illinois Phys550 Molecular Biophysics Lecture 12: Radiation Processes Light Scattering

    08 Mar 2010 | | Contributor(s):: Klaus Schulten

  16. ECET 499N Lecture 8: Electron Microscopy

    02 Mar 2010 | | Contributor(s):: Eric Stach

    Guest lecture: Eric A. Stach

  17. Illinois Phys550 Molecular Biophysics Lecture 7: Structure Analysis by X-ray and Electron Scattering II

    16 Feb 2010 | | Contributor(s):: Klaus Schulten

  18. Illinois Phys550 Molecular Biophysics Lecture 6: Structure Analysis by X-ray and Electron Scattering I

    12 Feb 2010 | | Contributor(s):: Klaus Schulten

    Crystal Lattice Scattering of Individual Atoms

  19. ANGEL - A Nonequilibrium Green's Function Solver for LEDs

    06 Feb 2010 | | Contributor(s):: sebastian steiger

    Introducing ANGEL, a Nonequilibrium Green’s Function code aimed at describing LEDs.ANGEL uses a description close to the classic NEMO-1D paper (Lake et al., JAP 81, 7845 (1997)) to model quantum transport in a light-emitting diode (LED).ANGEL is the first 1D-heterostructure NEGF to include the...

  20. Illinois 2009 nano-biophotonics Summer School, Lecture 18: Bond-Selective Imaging based on Coherent Raman Scattering

    03 Nov 2009 | | Contributor(s):: Kimani C Toussaint

    Bond-Selective Imaging based on Coherent Raman ScatteringTopics: Imaging Cells in a Tissue Microenvironment Nonlinear Optical (NLO) Microscopy Combining Two-photon Excited Fluorescence (TPEF)with Second Harmonic Generation (SHG) Raman Scattering Biggest Challenge in Raman Imaging - Very Weak...