Tags: Simulation

Online Presentations (101-120 of 135)

  1. Cancer Care Engineering

    31 Jan 2011 | | Contributor(s):: Joseph Pekny

  2. NEEShub

    31 Jan 2011 | | Contributor(s):: Rudi Eigenmann

  3. What's the HUBbub? - Panel Discussion

    31 Jan 2011 | | Contributor(s):: Michael McLennan, Mark Lundstrom, Rudi Eigenmann

  4. 2010 Nano-Biophotonics Summer School @ UIUC Lecture 5 - Biomedicine - A tour of the Cell

    25 Sep 2010 | | Contributor(s):: Marina Marjanovic

    Edited and Uploaded by Omar Sobh, University of Illinois at Urbana-Champaign

  5. Nanoelectronic Modeling Lecture 41: Full-Band and Atomistic Simulation of Realistic 40nm InAs HEMT

    05 Aug 2010 | | Contributor(s):: Gerhard Klimeck, Neerav Kharche, Neophytos Neophytou, Mathieu Luisier

    This presentation demonstrates the OMEN capabilities to perform a multi-scale simulation of advanced InAs-based high mobility transistors.Learning Objectives:Quantum Transport Simulator Full-Band and Atomistic III-V HEMTs Performance Analysis Good Agreement with Experiment Some Open Issues...

  6. Nanoelectronic Modeling Lecture 40: Performance Limitations of Graphene Nanoribbon Tunneling FETS due to Line Edge Roughness

    05 Aug 2010 | | Contributor(s):: Gerhard Klimeck, Mathieu Luisier

    This presentation the effects of line edge roughness on graphene nano ribbon (GNR) transitors..Learning Objectives:GNR TFET Simulation pz Tight-Binding Orbital Model 3D Schrödinger-Poisson Solver Device Simulation Structure Optimization (Doping, Lg, VDD) LER => Localized Band Gap States LER =>...

  7. Nanoelectronic Modeling Lecture 39: OMEN: Band-to-Band-Tunneling Transistors

    05 Aug 2010 | | Contributor(s):: Gerhard Klimeck, Mathieu Luisier

    This presentation discusses the motivation for band-to-band tunneling transistors to lower the power requirements of the next generation transistors. The capabilities of OMEN to model such complex devices on an atomistic representation is demonstrated.Learning Objectives:Band-To-Band Tunneling...

  8. Nanoelectronic Modeling Lecture 33: Alloy Disorder in Bulk

    04 Aug 2010 | | Contributor(s):: Gerhard Klimeck, Timothy Boykin, Chris Bowen

    This presentation discusses disorder in AlGaAs unstrained systems in bulk. Bandstructure of an ideal simple unit cellWhat happens when there is disorder?Concept of a supercellBand folding in a supercellBand extraction from the concept of approximate bandstructureComparison of alloy disorder with...

  9. Nanoelectronic Modeling Lecture 32: Strain Layer Design through Quantum Dot TCAD

    04 Aug 2010 | | Contributor(s):: Gerhard Klimeck, Muhammad Usman

    This presentation demonstrates the utilization of NEMO3D to understand complex experimental data of embedded InAs quantum dots that are selectively overgrown with a strain reducing InGaAs layer. Different alloy concentrations of the strain layer tune the optical emission and absorption wavelength...

  10. Nanoelectronic Modeling Lecture 31a: Long-Range Strain in InGaAs Quantum Dots

    04 Aug 2010 | | Contributor(s):: Gerhard Klimeck

    This presentation demonstrates the importance of long-range strain in quantum dotsNumerical analysis of the importance of the buffer around the central quantum dot - local band edges – vertical and horizontal extension of the bufferControlled overgrowth can tune the electron energies in the...

  11. Nanoelectronic Modeling Lecture 25a: NEMO1D - Full Bandstructure Effects

    07 Jul 2010 | | Contributor(s):: Gerhard Klimeck

    (quantitative RTD modeling at room temperature)

  12. Nanoelectronic Modeling Lecture 26: NEMO1D -

    09 Mar 2010 | | Contributor(s):: Gerhard Klimeck

    NEMO1D demonstrated the first industrial strength implementation of NEGF into a simulator that quantitatively simulated resonant tunneling diodes. The development of efficient algorithms that simulate scattering from polar optical phonons, acoustic phonons, alloy disorder, and interface roughness...

  13. Nanoelectronic Modeling Lecture 22: NEMO1D - Motivation, History and Key Insights

    07 Feb 2010 | | Contributor(s):: Gerhard Klimeck

    The primary objective of the NEMO-1D tool was the quantitative modeling of high performance Resonant Tunneling Diodes (RTDs). The software tool was intended for Engineers (concepts, fast turn-around, interactive) and Scientists (detailed device anaysis). Therefore various degrees of...

  14. Nanoelectronic Modeling Lecture 03: nanoHUB.org - Online Simulation and More

    25 Jan 2010 | | Contributor(s):: Gerhard Klimeck

    This presentation provides a brief overview of the nanoHUB capabilites, compares it to static web page delivery, highlights its technology basis, and provides a vision for future cyberinfrastructures in a system of federated HUBs powered by the HUBzero.org infrastructure.

  15. Nanoelectronic Modeling Lecture 02: (NEMO) Motivation and Background

    25 Jan 2010 | | Contributor(s):: Gerhard Klimeck, Dragica Vasileska

    Fundamental device modeling on the nanometer scale must include effect of open systems, high bias, and an atomistic basis. The non-equilibrium Green Function Formalism (NEGF) can include all these components in a fundamentally sound approach and has been the basis for a few novel device...

  16. ECE 656 Lecture 31: Monte Carlo Simulation

    01 Dec 2009 | | Contributor(s):: Mark Lundstrom

    Outline:IntroductionReview of carrier scatteringSimulating carrier trajectoriesFree flightCollisionUpdate after collisionPutting it all togetherSummary

  17. ECE 656 Lecture 30: Balance Equation Approach III

    01 Dec 2009 | | Contributor(s):: Mark Lundstrom

    OutlineCarrier Temperature and Heat FluxBalance equations in 3DHeterostructuresSummary

  18. Lecture 5: NEGF Simulation of Graphene Nanodevices

    23 Sep 2009 | | Contributor(s):: Supriyo Datta

  19. Tutorial for NanogromacsSenior

    28 Apr 2008 | | Contributor(s):: Dairui Chen

  20. nanoHUB.org: Future Cyberinfrastructure Serving a Community of 60,000 Today

    23 Apr 2008 | | Contributor(s):: George B. Adams III, Gerhard Klimeck, Mark Lundstrom, Michael McLennan

    nanoHUB.org provides users with "fingertip access" to over 70 simulation tools for research and education. Users not only launch jobs that are executed on the state-of-the-art computational facilities of Open Science Grid and TeraGrid, but also interactively visualize and analyze the results—all...