Tags: simulation and modeling

Resources (21-40 of 62)

  1. Atomistic Material Science

    03 Nov 2011 | | Contributor(s):: Alejandro Strachan

    This course introduces first principles electronic structure calculations of materials properties and the concept of molecular dynamics (MD) simulations of materials focusing on the physics and approximations underlying the simulations and interpretation of their results.

  2. Tutorial 1: Atomistic Material Science - ab initio simulations of materials

    03 Nov 2011 | | Contributor(s):: Alejandro Strachan

    This lecture introduces first principles electronic structure calculations of materials properties.It describes the approximations made to the many-body Schrodinger equation in Hartree Fock and Density Functional Theory and numerical approximations used in computer simulations.

  3. Tutorial 2: Atomistic Material Science - Molecular Dynamics simulations of materials

    03 Nov 2011 | | Contributor(s):: Alejandro Strachan

    This lecture introduces the concept of molecular dynamics (MD) simulations of materials focusing on the physics and approximations underlying the simulations and interpretation of their results.

  4. 2011 NCN@Purdue Summer School: Electronics from the Bottom Up

    20 Jul 2011 |

    click on image for larger versionAlumni Discussion Group: LinkedIn

  5. Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Systems

    20 Jul 2011 | | Contributor(s):: J. L. Gray

    Modeling and simulation play an important role in designing and optimizing PV systems. This tutorial is a broad overview of the topic including a look at detailed, numerical device simulation.

  6. What's the HUBbub? HUBzero technology for online research and teaching collaborations

    21 Feb 2011 | | Contributor(s):: Michael McLennan

  7. NCN, nanoHUB, HUBzero: cyberinfrastructure for nanotechnology

    10 Feb 2011 | | Contributor(s):: Mark Lundstrom

    Presentation made at the Workshop to Develop the Global Nanotechnology Network, Grenoble, France.

  8. Quantum Dot Wave Function (Quantum Dot Lab)

    02 Feb 2011 | | Contributor(s):: Gerhard Klimeck, David S. Ebert, Wei Qiao

    Electron density of an artificial atom. The animation sequence shows various electronic states in an Indium Arsenide (InAs)/Gallium Arsenide (GaAs) self-assembled quantum dot.

  9. Self-Assembled Quantum Dot Structure (pyramid)

    02 Feb 2011 | | Contributor(s):: Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    Pyramidal InAs Quantum dot. The quantum dot is 27 atomic monolayers wide at the base and 15 atomic monolayers tall.

  10. The HUBzero Platform for Scientific Collaboration

    31 Jan 2011 | | Contributor(s):: Michael McLennan

    The framework that powers nanoHUB.org has been released as an open source package known as the HUBzero(r) Platform for Scientific Collaboration.

  11. nanoHUB.org - Past, Present, Future...

    31 Jan 2011 | | Contributor(s):: Mark Lundstrom

  12. NEEShub

    31 Jan 2011 | | Contributor(s):: Rudi Eigenmann

  13. What's the HUBbub? - Panel Discussion

    31 Jan 2011 | | Contributor(s):: Michael McLennan, Mark Lundstrom, Rudi Eigenmann

  14. Cyber Infrastructure Days at Purdue University

    31 Jan 2011 |

    Purdue CI Days 2010 showcases technologies to enhance research, teaching and research funding. The program focus is on how just about any faculty member, research staffer, or graduate student can benefit from these technologies.

  15. Quantum Dot Wave Function (still image)

    31 Jan 2011 | | Contributor(s):: Gerhard Klimeck, David S. Ebert, Wei Qiao

    Electron density of an artificial atom. The image shown displays the excited electron state in an Indium Arsenide (InAs) / Gallium Arsenide (GaAs) self-assembled quantum dot.

  16. Self-Assembled Quantum Dot Wave Structure

    31 Jan 2011 | | Contributor(s):: Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    A 20nm wide and 5nm high dome shaped InAs quantum dot grown on GaAs and embedded in InAlAs is visualized.

  17. Electron Density in a Nanowire

    30 Jan 2011 | | Contributor(s):: Gerhard Klimeck, Saumitra Raj Mehrotra

    Electron Density in a circular Silicon nanowire transistor.

  18. Tunneling in an Nanometer-Scaled Transistor

    25 Jan 2011 | | Contributor(s):: Gerhard Klimeck, Mathieu Luisier, Neerav Kharche, George A. Howlett, Insoo Woo, David Ebert

    Electrons tunneling through the gate of an ultra-scaled transistor.

  19. Modeling the quantum dot growth in the continuum approximation

    12 Jan 2011 | | Contributor(s):: Peter Cendula

    Quantum dots can grow spontaneously during molecular beam epitaxy oftwo materials with different lattice parameters, Stranski-Krastanow growth mode.We study a mathematical model based on the continuum approximation of thegrowing layer in two dimensions. Nonlinear evolution equation is solved...

  20. Solar Cells Operation and Modeling

    19 Jul 2010 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This set of slides decribes the basic principles of operation of various generations on solar cells with emphasis to single crystalline solar cells. Next, semiconductor equations that describe the operation of a solar cell under simplified conditions is given. Finally, modeling of single...