
Transferable Tight Binding Model for Strained Heterostructures
22 Oct 2016   Contributor(s):: Yaohua Tan, Michael Povolotskyi, Tillmann Christoph Kubis, Timothy Boykin, Gerhard Klimeck
IWCE 2015 presentation.

Density Functional Tight Binding (DFTB) Modeling in the Context of UltraThin SilicononInsulator MOSFETs
10 Oct 2015   Contributor(s):: Stanislav Markov
IWCE 2015 presentation. We investigate the applicability of density functional tight binding (DFTB) theory [1][2], coupled to nonequilibrium Green functions (NEGF), for atomistic simulations of ultrascaled electron devices, using the DFTB+ code [3][4]. In the context of ultrathin...

Thermoelectric effects in semiconductor nanostructures: Role of electron and lattice properties
06 Oct 2010   Contributor(s):: Abhijeet Paul, Gerhard Klimeck
This presentation covers some aspects of present development in the field of thermoelectricity and focuses particularly on the silicon nanowires as potential thermoelectric materials. The electronic and phonon dispersions are calculated and used for the calculation of thermoelectric properties...

Nanoelectronic Modeling Lecture 40: Performance Limitations of Graphene Nanoribbon Tunneling FETS due to Line Edge Roughness
05 Aug 2010   Contributor(s):: Gerhard Klimeck, Mathieu Luisier
This presentation the effects of line edge roughness on graphene nano ribbon (GNR) transitors..Learning Objectives:GNR TFET Simulation pz TightBinding Orbital Model 3D SchrödingerPoisson Solver Device Simulation Structure Optimization (Doping, Lg, VDD) LER => Localized Band Gap States LER =>...

Nanoelectronic Modeling Lecture 32: Strain Layer Design through Quantum Dot TCAD
04 Aug 2010   Contributor(s):: Gerhard Klimeck, Muhammad Usman
This presentation demonstrates the utilization of NEMO3D to understand complex experimental data of embedded InAs quantum dots that are selectively overgrown with a strain reducing InGaAs layer. Different alloy concentrations of the strain layer tune the optical emission and absorption...

Nanoelectronic Modeling Lecture 29: Introduction to the NEMO3D Tool
04 Aug 2010   Contributor(s):: Gerhard Klimeck
This presentation provides a very high level software overview of NEMO3D. The items discussed are:Modeling Agenda and MotivationTightBinding Motivation and basic formula expressionsTight binding representation of strainSoftware structureNEMO3D algorithm flow NEMO3D parallelization scheme –...

Nanoelectronic Modeling Lecture 28: Introduction to Quantum Dots and Modeling Needs/Requirements
20 Jul 2010   Contributor(s):: Gerhard Klimeck
This presentation provides a very high level software overview of NEMO1D.Learning Objectives:This lecture provides a very high level overview of quantum dots. The main issues and questions that are addressed are:Length scale of quantum dotsDefinition of a quantum dotQuantum dot examples and...

Nanoelectronic Modeling Lecture 25b: NEMO1D  Hole Bandstructure in Quantum Wells and Hole Transport in RTDs
09 Mar 2010   Contributor(s):: Gerhard Klimeck
Heterostructures such as resonant tunneling diodes, quantum well photodetectors and lasers, and cascade lasers break the symmetry of the crystalline lattice. Such break in lattice symmetry causes a strong interaction of heavy, light and splitoff hole bands. The bandstructure of holes and the...

Lecture 2: Graphene Fundamentals
22 Sep 2009   Contributor(s):: Supriyo Datta