
NEMO5 Overview Presentation
17 Jul 2012   Contributor(s):: Tillmann Christoph Kubis, Michael Povolotskyi, Jean Michel D Sellier, James Fonseca, Gerhard Klimeck
This presentation gives an overview of the current functionality of NEMO5.

ECE 659 Lecture 38.0: Correlations and Entanglement
04 May 2009   Contributor(s):: Supriyo Datta
This lecture is from the series of lecturesNanoelectronics and the Meaning of Resistance.

Spins and Magnets (Whiteboard lecture), Part 1
06 Jan 2009   Contributor(s):: Supriyo Datta
Whiteboard version of approximately the same material covered in Lectures 3A/3B.

Spins and Magnets (Whiteboard lecture), Part 2
06 Jan 2009   Contributor(s):: Supriyo Datta
Whiteboard version of approximately the same material covered in Lectures 3A/3B.

Quantum and Thermal Effects in Nanoscale Devices
18 Sep 2008   Contributor(s):: Dragica Vasileska
To investigate lattice heating within a Monte Carlo device simulation framework, we simultaneously solve the Boltzmann transport equation for the electrons, the 2D Poisson equation to get the selfconsistent fields and the hydrodynamic equations for acoustic and optical phonons. The phonon...

Lecture 6: Quantum Transport in Nanoscale FETs
12 Sep 2008   Contributor(s):: Mark Lundstrom
The previous lessons developed an analytical (or almost analytical) theory of the nanoscale FET, but to properly treat all the details, rigorous computer simulations are necessary. This lecture presents quantum transport simulations that display the internal physics of nanoscale MOSFETs. We use...

Lecture 4A: Energy Exchange and Maxwell's Demon
02 Sep 2008   Contributor(s):: Supriyo Datta
Objective: To incorporate distributed energy exchange processes into the previous models from lectures 1 through 3 which are based on a "Landauerlike picture" where the Joule heating associated with current flow occurs entirely in the two contacts.Although there is experimental evidence that...

Introduction: Nanoelectronics and the meaning of resistance
20 Aug 2008   Contributor(s):: Supriyo Datta
This lecture provides a brief overview of the fiveday short course whose purpose is to introduce a unified viewpoint for a wide variety of nanoscale electronic devices of great interest for all kinds of applications including switching, energy conversion and sensing. Our objective, however, is...

Lecture 1A: What and where is the resistance?
20 Aug 2008   Contributor(s):: Supriyo Datta
Objective: To introduce a simple quantitative model that highlights the essential parameters that determine electrical conduction: the density of states in the channel, D and the rates at which electrons hop in and out of the two contacts, labeled source and drain. This model is used to explain...

Lecture 1B: What and where is the resistance?
20 Aug 2008   Contributor(s):: Supriyo Datta
Objective: To introduce a simple quantitative model that highlights the essential parameters that determine electrical conduction: the density of states in the channel, D and the rates at which electrons hop in and out of the two contacts, labeled source and drain. This model is used to explain...

Lecture 2A: Quantum Transport
20 Aug 2008   Contributor(s):: Supriyo Datta
Objective: To extend the simple model from Lectures 1 into the fullfledged Nonequilibrium Green’s Function (NEGF) – Landauer model by introducing a spatial grid of N points and turning numbers like into (NxN) matrices like , with incoherent scattering introduced through . This model will be...

Lecture 2B: Quantum Transport
20 Aug 2008   Contributor(s):: Supriyo Datta
Objective: To extend the simple model from Lectures 1 into the fullfledged Nonequilibrium Green’s Function (NEGF) – Landauer model by introducing a spatial grid of N points and turning numbers like into (NxN) matrices like , with incoherent scattering introduced through . This model will be...

Lecture 3A: Spin Transport
20 Aug 2008   Contributor(s):: Supriyo Datta
Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no major effect on device operation except to increase the conductance by a factor of two.But it is now...

Lecture 3B: Spin Transport
20 Aug 2008   Contributor(s):: Supriyo Datta
Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no major effect on device operation except to increase the conductance by a factor of two.But it is now...

Lecture 4B: Energy Exchange and Maxwell’s Demon
20 Aug 2008   Contributor(s):: Supriyo Datta
Objective: To incorporate distributed energy exchange processes into the previous models from lectures 1 through 3 which are based on a “Landauerlike picture” where the Joule heating associated with current flow occurs entirely in the two contacts.Although there is experimental evidence that...

Lecture 5A: Correlations and Entanglement
20 Aug 2008   Contributor(s):: Supriyo Datta
Objective: To relate the oneelectron picture used throughout these lectures to the more general but less tractable manyparticle picture that underlies it. We introduce this new viewpoint using the example of Coulomb blockaded electronic devices that are difficult to model within the picture...

Lecture 5B: Correlations and Entanglement
20 Aug 2008   Contributor(s):: Supriyo Datta
Objective: To relate the oneelectron picture used throughout these lectures to the more general but less tractable manyparticle picture that underlies it. We introduce this new viewpoint using the example of Coulomb blockaded electronic devices that are difficult to model within the picture...

Engineering at the nanometer scale: Is it a new material or a new device?
06 Nov 2007   Contributor(s):: Gerhard Klimeck
This seminar will overview NEMO 3D simulation capabilities and its deployment on the nanoHUB as well as an overview of the nanoHUB impact on the community.

Orbital Mediated Tunneling in a New Unimolecular Rectifier
25 May 2007   Contributor(s):: Robert Metzger, NCN at Northwestern University
In 1997 we showed that hexadecylquinolinium tricyanoquinodimethanide is a unimolecular rectifier, by scanning tunneling microscopy and also as a LangmuirBlodgett (LB) monolayer, sandwiched between Al electrodes. We have now seen rectification in a new molecule: this rectification can be...

Pan American Advanced Study Institute Lectures: Nanodevices and Maxwell’s Demon
14 Jun 2007   Contributor(s):: Supriyo Datta
Pan AmericanAdvanced Study Institute (PASI) Lectures: Nanodevices and Maxwell's DemonThis is a video taped set of two onehour live lectures covering roughly the same material as Lectures 13 of Concepts of Quantum Transport.