source: trunk/rappture/tool.xml @ 41

Revision 38, 5.0 KB checked in by areshkin, 3 years ago (diff)
  • Property svn:executable set to *
Line 
1<?xml version="1.0"?>
2<run>
3<tool>
4  <title>CNTbands</title>
5  <about>
6Learn about Carbon Nanostructure physics as you explore the devices in this simulator.
7
8Enter values on the left, then push the Simulate button.  Simulation results will appear here. 
9
10For nanotubes, try n=7, m=7 (7,7) to see an "armchair" metallic nanotube.  Then try a (12,0) "zigzag" nanotube, which is a different kind of metallic nanotube.  Next, try a (13,0) zigzag nanotube. The energy gap in the band diagram tells you that this last one is semiconducting. 
11
12Then select the nanoribbon device, type A, and try (3,3) for a "zigzag-edge" nanoribbon.  Next try a (4,0) "armchair-edge", semiconducting nanoribbon.
13
14This application is powered by: Octave and Fortran 77. Last updated April 2010.
15  </about>
16  <command>
17    @tool/cnbandswr @driver
18  </command>
19  <control></control>
20  <limits>
21     <filesize>100000000</filesize>
22     <cputime>7200</cputime>
23  </limits>
24</tool>
25<input>
26
27  <about>
28  <label>Test Label</label>
29  </about>
30
31    <loader id="structure">
32      <about>
33        <label>Structure</label>
34        <description>Select a carbon nanostructure to be simulated.</description>
35      </about>
36      <example>*.xml</example>
37      <default>CNT.xml</default>
38    </loader>
39
40    <structure></structure>
41
42  <group id="chirality">
43    <about>
44      <label>Chirality (n,m)</label>
45    </about>
46    <integer id="CarbonTypeN">
47      <about>
48        <label>n</label>
49        <description>
50In Carbon Nanotubes (CNT):
51The chirality (n,m) determines the type of the carbon nanotube.  It indicates how a graphite sheet would be rolled up to form the nanotube.
52An "armchair" nanotube has n=m.  A "zigzag" nanotube has m=0.  A nanotube is metallic if n-m is divisible by 3; otherwise, it is semiconducting.
53
54In Graphene Nanoribbon (GNR):
55The chirality (n,m) is one factor that determines the structure of the graphene nanoribbon. It indicates how a cut-off vector is related to the half of graphene basis vectors, a1/2 and a2/2.
56An "armchair-edge" nanoribbon has m=0. A "zigzag-edge" nanoribbon has n=m.  Constraints on chirality: (n, n) or (n, 0), where n is within interval [2, 100].       
57        </description>
58      </about>
59      <min>2</min>
60      <max>100</max>
61      <default>7</default>
62    </integer>
63
64    <integer id="CarbonTypeM">
65      <about>
66        <label>m</label>
67        <description>
68In Carbon Nanotubes (CNT):
69The chirality (n,m) determines the type of the carbon nanotube.  It indicates how a graphite sheet would be rolled up to form the nanotube.
70An "armchair" nanotube has n=m.  A "zigzag" nanotube has m=0.  A nanotube is metallic if n-m is divisible by 3; otherwise, it is semiconducting.
71
72In Graphene Nanoribbon (GNR):
73The chirality (n,m) is one factor that determines the structure of the graphene nanoribbon. It indicates how a cut-off vector is related to the half of graphene basis vectors, a1/2 and a2/2.
74An "armchair-edge" nanoribbon has m=0. A "zigzag-edge" nanoribbon has n=m. Constraints on chirality: (n, n) or (n, 0), where n is within interval [2, 100].
75        </description>
76      </about>
77      <min>0</min>
78      <max>100</max>
79      <default>7</default>
80    </integer>
81  </group>
82
83  <group id="model">
84    <about>
85      <label>Model parameters</label>
86    </about>
87    <number id="TightBindingEnergy">
88      <about>
89        <label>Tight Binding Energy</label>
90        <description>This is the tight binding overlap integral, or hopping energy.  It is a measure of the overlap of orbitals at neighboring sites in the nanotube.  Typical values are around 3eV.  See the references on the tool information page for more details.</description>
91        <icon>R0lGODlhGAAQAKIFAADlAACzAP///wD/AAAAAP///wAAAAAAACH5BAEAAAUALAAAAAAYABAAAANA
92WLrc/jBKRWotZLbMrobWFIyBRJZMAAgDgDoq66bsMLxNUN+pbeM9H05lmz2ILeDJRJqEPg/PggPN
93WKTQrDaSAAA7
94</icon>
95      </about>
96      <units>eV</units>
97      <min>2eV</min>
98      <max>3.5eV</max>
99      <default>3eV</default>
100    </number>
101
102    <number id="CenterToCenter">
103      <about>
104        <label>Carbon-carbon spacing</label>
105        <description>This is the distance between the centers of any two carbon atoms in the nanostructure.  Usually 1.42A, but you can adjust it if you don't believe the usual value.</description>
106        <icon>R0lGODlhGAAQAKIGAADlAICAgACzAP///wAAAAD/AP///wAAACH5BAEAAAYALAAAAAAYABAAAANH
107aLrc/jDKGYUV8mImwCjA5nRfyH1FIQRsywqoyqWp2Ai0vHSp+fAgm0GzCCiMCuKEgAwQKA2CdCqF
108LqhU67X51BaP3rD4kQAAOw==
109</icon>
110      </about>
111      <units>A</units>
112      <min>1.3A</min>
113      <max>1.5A</max>
114      <color>yellow</color>
115      <default>1.42A</default>
116    </number>
117  </group>
118
119    <integer id="NumCellForTube">
120      <about>
121        <label>Length in 3-D view</label>
122        <description>This determines the length of the nanostructure shown in the 3-D view.  The unit cell is repeated along the length such that the overall length of the structure is about this number in Ang.</description>
123        <diffs>ignore</diffs>
124      </about>
125      <units></units>
126      <min>2</min>
127      <max>50</max>
128      <default>40</default>
129    </integer>
130
131</input>
132</run>
Note: See TracBrowser for help on using the repository browser.