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ABSTRACT 

 

We present exact non-recursive method for constructing self-energy matrixes, which ac-

count for the contacts between quantum system and one-dimensional leads.  Leads must 

possess chiral or translational symmetry, in all other respects their structure is arbitrary.  

Self-energy is constructed from the Green’s function for the infinitely long perfect lead.  

Integral expression for the Green’s function is replaced by the summation of the residues 

in the upper complex K-plane.  Positions of the poles are obtained by using transfer ma-

trix technique presented in the next article of this issue.  The self-energy matrix is ex-

pressed as analytic function of the transfer matrix eigenvalues and eigenvectors.  Such 

analytic form allows clear insight for the conductance expression based on non-

equilibrium Green’s function formalism.  Case study examining the influence of random 

distortion on the localization length in nano-tubes demonstrates the utility of the method.  

Simple approximate analytic expression for the localization length provides a good fit to 

the simulation results, allowing better understanding of scattering processes in disordered 

systems.  The algorithm is formulated for an orthogonal basis set, but no obstacles are 

foreseen in expanding it towards a non-orthogonal basis. 
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I.  INTRODUCTION 

 

 Every quantum electronic device is connected to the outside world through the 

electric contacts.  In the present paper we consider the case when the contacts have the 

form of one-dimensional leads with chiral or translational symmetry.  Such leads may be, 

but not limited to silicon wires, organic molecules, or nano-tubes.  Usually simulation of 

electronic device requires the detailed description only for the region where electron scat-

tering and hence voltage drop occur.  In the following we designate such region as the 

“system”.  If the lead outside the system can be considered perfectly periodic, its influ-

ence on the system may be substituted by the energy dependent self-energy matrix Σ[ε].  

Such substitution does not involve any approximations and is mathematically exact.  At 

the same time the use of self-energies is of great advantage because it limits the computa-

tion to finite size matrixes associated with the system alone.  Given the contact self-

energies and system’s Hamiltonian it is straightforward to compute the Green’s function 

of the system.  Both the Green’s function and the self-energy are the key quantities in 

non-equilibrium Green’s function formalism (NEGF).  The latter is a general tool for 

computing electron density, currents or current density, scattering matrixes for currents or 

separate wave functions, etc.  However, despite of the mandatory presence of self-energy 

in any open-system calculations, the methodology for its computation is still incomplete.  

According to the recent reviews
1,2

 there are two major approaches for self-energy compu-

tation.  These two groups can be denoted as “iterative” and “transfer matrix” methods.  

The first group is based on the iterative solution of Eq.(12).
3-5

  It is easy to prove (Ap-

pendix A) that the iterative solution of Eq.(12) does not converge for any real energy 

value corresponding to the non-zero density of states in the lead.  Therefore to achieve 

the convergence of Eq.(X) or any variant of iterative algorithm originating from it, a fi-

nite imaginary part must be added to the energy.  The iterative methods have two major 

drawbacks.  The first one is the computational speed: iterative methods are slower
6
 than 

transfer matrix methods.  The second inconvenience is a small imaginary part, required 

for convergence.  If Im[ε] is too small, the numerical error of the recursive method may 

ruin the computation.  That is most likely in the vicinity of the band edge, where the self-

energy of 1-D system is discontinuous.  On the other hand finite Im[ε] is always a source 
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of systematic error.  Therefore for each particular system the appropriate Im[ε] should be 

chosen individually through monitoring the convergence and precision of the recursion 

algorithm.     

 Transfer matrix methods
6-10

 are exact and computationally efficient.  They stem 

out of the works by Allen
8
, Lee, and Joannopoulos

9
, who have developed computation 

methods for the surface Green’s functions.  The later work by Umerski
6
 provides a novel 

outlook to the surface Green’s function construction through the Möbius transformation.  

Usually the Umerski’s method is not ranked among the transfer matrix methods.  Howev-

er, despite its formal uniqueness, this method utilizes essentially the same transfer matrix 

as the earlier works.
9,10

  The transfer matrix class of algorithms builds the Green’s func-

tion and hence the self-energy from the solutions of the problem H[Λi]·Ci = ε Ci ; Λi  

Exp[i Ki].  Here H[Λi] is the Hamiltonian of the perfect lead defined by Eq.(5) and Fig. 

1(b), and {Ki} and {Ci} are the sets of all possible wave numbers and wave functions, 

which satisfy this equation for a given ε.  The sets {Ki} and {Ci} are obtained as the ei-

genproblem solution for the transfer matrix.   

The major drawback of the transfer matrix methods, which is avoided by iterative 

algorithms, was the inability to handle problems with the singular coupling matrix η (Fig. 

1(b)).  The first attempt to resolve this issue has been undertaken by Chang and Schul-

man.
10

  Their method was formulated for the special type of singularity inherent to the 

coupling between crystalline planes.  That was not considered a deficiency of the method, 

because it was adequate for the physical problem in hand.  However, with the advent of 

1-D quantum wires, this shortcoming became noticeable, since the singularity structure of 

the coupling matrix associated with 1-D Hamiltonian does not generally match any regu-

lar pattern and cannot be handled using the Chang and Schulman’s algorithm.  This issue 

has been recently addressed by Tomfohr and Sankey who have developed the transfer 

matrix technique for an arbitrary singular η.
11

  This technique, however, has inherent nu-

merical instability problem.  It restricts the usage of Tomfohr-Sankey’s method to small η 

matrixes and (or) simple Hamiltonians with few energy bands confined within moderate-

ly small energy range. 

In the present paper computation of the Green’s function follows the same intui-

tively straightforward path, which has been initially suggested by Allen.
8
  The advance-
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ment of our method includes “fixes” for the two principle drawbacks of the original Al-

len’s approach.  Firstly, even if the sets {Ki} and {Ci} are assumed to be known, Allen’s 

method is still not suited for Green’s functions computation if the coupling matrix η is 

singular.  Secondly, Allen’s expression for the Green’s function is not analytic and hence 

cannot be extended into complex energy plane, which is essential for contour integration.  

We also propose the new method for the construction of the transfer matrix to obtain {Ki} 

and {Ci}.  The proposed method is faster and more stable numerically than the Tomfohr-

Sankey’s algorithm.  It is capable of handling the systems with singular coupling Hamil-

tonian sub-blocks for which the Tomfohr-Sankey’s method fails.  The set of the systems 

handled by the Tomfohr-Sankey’s method is the subset of the systems handled by our 

method.  Since the transfer matrix algorithm has stand-alone value and its applicability is 

not restricted to the Green’s functions and self-energies of 1-D leads, we present it in the 

form of the separate article, which follows the current paper.  In both papers we assume 

orthogonal basis set. 

 When a random distortion is imposed on the ideal quantum wire, it can be statisti-

cally characterized by the two length parameters: Lp and L.
12

  The former is the momen-

tum scattering length: when the distorted region becomes larger than Lp, the conductance 

becomes appreciably different from its ideal value due to backscattering.  The latter is the 

phase scattering length: if the separation between two points is larger than L, the phases 

of the wave function at these points become independent from each other.  At low tem-

peratures, when the phonon scattering is negligible, L >> Lp.  If the length of the dis-

torted region L satisfies the condition L > L > Lp, the conductance dependence on L can 

be approximately described as C[L] = C0 Exp[-L/L0].  Here C0 is the value of the ideal con-

ductance, and parameter L0 is called the “localization length”.  We apply the self-energy 

computation algorithm to the evaluation of L0 in two ways: numerically and analytically.  

The numerical evaluation of L0 is performed by statistical averaging of Log[C[L]] over 

the ensemble of randomly distorted nano-tubes.  The obtained numerical result fits well 

the approximate analytical expression for L0.  The latter was obtained using the concept 

of the complex K-states - the foundation of the Green’s function and self-energy compu-

tation method. 
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 To facilitate the understanding of the self-energy computation algorithm we intro-

duce it for the simplest case when the translationally symmetric 1-D system is described 

by the tri-block-diagonal Hamiltonian.  Extension to the multi-block-diagonal Hamilto-

nians and screw symmetry is performed afterwards.  The paper is structured in the tutori-

al format: first the step-by-step algorithm for self-energy construction is introduced, after 

that the detailed explanation of each step is provided.  The rest of the paper is organized 

as follows.  The next section contains the problem description and the related definitions.  

Section III presents the algorithm for self-energy computation for the simplest tri-block-

diagonal, translationally symmetric case.  It contains all necessary information for those 

who don’t want to delve into underlying theory and need “just the self-energy matrix” for 

the given energy value and Hamiltonian sub-blocks.  Section IV relates self-energy ma-

trixes to the Green’s function sub-blocks of the infinite (not semi-infinite!) periodic 1-D 

structure.  Section V provides the general expression for the arbitrary Green’s function 

matrix element through the integral in K-space and explains how K-integration in the 

complex K-plane can be substituted by the residue summation.  Sections VI-VII expand 

the algorithm onto general type multi-band-block-diagonal Hamiltonian and structures 

possessing screw symmetry.  Section VIII contains the derivation for the approximate 

localization length expression and its comparison to the numerical results. 

 

II.  PROBLEM SETUP 

  

In a localized basis representation the Hamiltonian associated with 1-D transla-

tionally periodic lead is represented by an infinite block-band matrix.  The number of 

bands equals 2 W + 1, where 2 W is the number of neighbor unit cells, which interact with 

any given unit cell.  The example in Fig. 1(a) illustrates second neighbor approximation 

described by a five-band Hamiltonian matrix.  The movement along linear system corres-

ponds to the downward movement along the Hamiltonian diagonal.  Even if the system 

has complex shape, e.g. spiral, we use notions “left” and “right” to denote the relative 

positions of the points in the system: the point corresponding to the upper-left sub-blocks 

of the Hamiltonian is said to lie to the left from the point, which corresponds to the bot-

tom-right sub-blocks. 
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 The minimal size of a self-energy matrix in an atomic orbital representation 

equals the interaction range.  It is convenient to make all matrixes involved in the self-

energy computation of the same size as the self-energy matrix.  To implement this idea 

one needs to view band-diagonal Hamiltonian as a tri-block-diagonal matrix with the sub-

block size equal to the interaction range.  That means the size of the original minimal unit 

cell, which is based on the symmetry of the lead, must be increased by some integer fac-

tor to make the unit cell sufficiently large and thus to prevent the interaction beyond the 

nearest neighbors.  Figure 1 illustrates the idea by joining two unit cells into one supercell 

and describing the Hamiltonian through the tri-block diagonal form.  In the following, 

until section VI, the term “unit cell” refers to the “renormalized” unit cell associated with 

tri-block diagonal Hamiltonian.  The self-energy matrix and the Green’s function sub-

blocks used in intermediate computations have the same dimensions as the sub-blocks of 

the tri-block diagonal Hamiltonian.  In the following we use tri-block diagonal Hamilto-

nian as the standard description of 1-D periodic lead.  We adopt the notation indicated in 

Fig. 1(b): h and η describe respectively the interaction between the orbitals belonging to 

the same unit cell and to the nearest neighbor unit cells.  The size of Hamiltonian sub-

blocks h and η is N.  

 The goal of the paper can be best explained by the example.  Suppose that the per-

fect infinite lead contains single defect extending into three unit cells (Fig. 2).  This ape-

riodic portion of the lead is described by the Hamiltonian sub-block HD of the size 3N.  

Suppose we need to compute Green’s function sub-block GD associated with HD for 

energy .  If the self-energy matrixes L[] and R[] describing the contacts to the left 

and the right portions of semi-infinite leads are known, the computation of the Green’s 

function is trivial: 

      
1

D D L RG I H   


      , where 
  

(1) 

 
  0 0

0 0 0

0 0 0

L

L





 
 

   
 
 

 ,  and   
 

0 0 0

0 0 0

0 0

R

R





 
 

   
  

 

 

(1-a) 
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The size of unity matrix I and matrixes  L   and  R   is 3N .  The size of matrixes 

L[] and R[] is N.  Knowledge of GD allows the immediate computation of electron 

density matrix at the defect region: 

   0

2
Im  DG f d    







       . 

  

(2) 

Here f is the Fermi function, and μ0 is the Fermi level, which is the same for both leads if 

the system is under equilibrium conditions.  Integration in Eq.(2) is usually substituted by 

contour integration in the upper complex energy half-plane.
13

  In the case when the Fermi 

level in the left and the right leads is shifted by respectively ΔμL and ΔμR by the applied 

voltage ΔV = ΔμL - ΔμR  

      
1

D D L L R RG I H     


        . 
  

(1-b) 

In that case the non-equilibrium density matrix, which imaginary part becomes non-zero 

and asymmetric, is
14

 

   

   

 

 

*

0

*

0

1
Im

Im            .

L D L L D

R D R R D

f G G

f G G

     


    










               




              







  

  

 

 
  

(2-a) 

The current between orbitals α and β is 
15

 

2

, , ,

4
Im  D

e
j H     

      , 

  

(3) 

which is trivially transformed to the Landauer’s expression for the total current: 

 
24

Im D

e
J Tr        . 

  

(3-a) 

Here 
0

0 0

D

D




 
  
 

, and ηD is the coupling matrix between two arbitrary portions of the 

defective region: 
1

2

D

D

D

h
H

h





 
  
 

.   

Computation of such a wealth of useful physical quantities requires only one non-

trivial component – the self-energy matrix.  The goal of this paper is to present the exact 
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non-recursive algorithm for construction of the self-energy matrixes L[] and R[].  Ex-

tension to topologies with larger number of leads is straightforward. 

 

III. ALGORITHM FOR SELF-ENERGY 

 

 Following each step number we indicate the number of the section, which con-

tains the detailed description of the given step.   

1. (Next article in this issue)  For the given energy ε construct transfer matrix T.  The 

size of T is even and equals 2 P.  If η is non-singular, P = N and T has the well known 

22 sub-block structure
11

   

 1 1 

0

TI h
T

I

        
  
 

 , 

  

(4) 

where I is the identity matrix of the size N.  The algorithm for the construction of T asso-

ciated with singular η is more complex and is presented in the next paper.  The poor 

man’s solution for the singular η case is to make substitution η  η + η, where η is an 

arbitrary small non-singular matrix, and then apply Eq.(4).  Usually this approach does 

not cause any noticeable change of the lead properties, e.g. its band structure, but may be 

not sufficient to obtain well-conditioned T.   

 Obtain the sets of 2  P scalars {Λi} and the corresponding 2 P vectors {Ci} of the 

length N.   Λi and Ci satisfy the eigenproblem equation H[Λi]·Ci = ε Ci , where 

    

1TH h        .  (5) 

If η is non-singular, {Λi} are simply the eigenvalues of matrix T, and {Ci} are the vectors 

composed from the first N components of the corresponding eigenvectors. 

2. (Sec. V)  For every Λα  {Λi} there is Λβ  {Λi} such that Λα = Λβ
-1

.  Create the com-

plimentary set { iC }, which is the reordered set {Ci}.  For α  {1, 2… 2 P} the α
th

 entry 

of { iC } is vector Cβ  {Ci} such that Λα = Λβ
-1

.  Normalize the sets {Ci} and { iC }: 

 ,         
T T

C C
C C

C C C C

 
 

   

 
 

 

  

 

3. (Sec. V).  Compute the set {Vi}: 
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   

1 T TV i C C             ,         α  {1, 2... 2 P} 
  

(6) 

4. (Sec. V).  Compose the sets {Csi}, { iCs }, {Vsi}, and {Λsi} from the sets {Ci}, {
iC }, 

{Vi} and {Λi} respectively.  Elements of {Ci}, {
iC }, {Vi} and {Λi} are selected respec-

tively for the sets {Csi}, { iCs }, {Vsi}, and {Λsi} only if 

     1                   

                             

      1 and 0 .

or

V



 







 

 

 

 

The size of the sets {Csi}, { iCs }, {Vsi}, and {Λsi} is P. 

5. (Sec. V).  Construct matrix G1,0: 

 1,0

  1

[ ]  
P

Ts
G i Cs Cs

Vs




 






    

  

(7) 

Let CS and CS denote matrices, which columns are respectively the vectors of the sets 

{Csi} and { iCs }.  Let also VS and ΛS denote diagonal matrices with the elements on the 

main diagonal equal respectively the elements of the sets {Vsi}, and {Λsi}.  Then, Eq.(7) 

may me rewritten in a matrix form: 

1

1,0[ ]  
T

G i CS S VS CS        

  

(7-a) 

The dimensions of G1,0 are NN, while the dimensions of CS and CS are NP, and the 

dimensions of VS and ΛS are PP.  If η is nonsingular, P = N, and hence G1,0 is also non-

singular.  In η is singular, P < N, and G1,0 is singular as well. 

6. (Sec. IV).  Construct matrix G0,0: 

        1

0,0 1,0 1,0

TTG I h I G G     


         
  

(8) 

7. (Sec. IV).  Construct self-energy matrices: 

     
1

0,0 1,0L G G   


     
  

(9-a) 

     
1

0,0 1,0

T T

R G G   


     
  

(9-b) 

 

IV. SELF-ENERGY FROM GREEN’S FUNCTIONS OF INFINITE LEAD 
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Suppose that the imaginary plane divides the lead along the unit-cell boundary.  

Let HL and HR denote respectively the Hamiltonian matrix sub-blocks describing the por-

tions of the lead to the left and to the right of the plane.  Let HLR denote the interaction 

between these two parts.  By analogy the Green’s matrix can be subdivided in the same 

fashion: 

       
L LR L LR

T

LR R RL R

H H G G
H G

H H G G

   
    
   

. 

  

(10) 

All sub-blocks are semi-infinite.  The HLR matrix has only a finite number of non-zero 

elements in the lower left corner due to the one-dimensional nature of the system and fi-

nite interaction radius between atomic orbitals.  These non-zero elements constitute the 

matrix η, which accounts for the coupling between the adjacent unit cells (cf. Fig. 1(b))   

0 0

0

LRH



 
 


 
 
 

 . 

  

 

The identity G((ε + i η) - H) = 1 applied to matrices (10) results in four equations for the 

semi-infinite matrix sub-blocks.  The equations for the left and the right upper sub-blocks 

respectively are  

   T

L L LR LRG i I H I G H       , (11-a) 

   LR R L LRG i I H G H      . (11-b) 

The expression in the parenthesis in Eq.(11-b) is the inverse Green’s function for the 

semi-infinite right portion of the system g
(R)

.  Equation (11-b) can be transformed to 

 -1  
RT T

L LR LR LR LRG G H H g H     . (11-c) 

Though Eq.(11-c) involves semi-infinite matrixes, the dimension of the non-zero part of 

Eq.(11-c) is the same as the dimension of η: 

 

   

   

 

0,0 0,1

1,0 1,1

0,0

 

0

0 0 0 0 0 0  .

0 0

R T

LR LR

R R
T

R R

R T

H g H

g g

g g

g



  

  

     
     
       
              
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Here g
(R)

i,j are the sub-blocks of g
(R)

, which have the same dimensions as η.  The product 

ηg
(R)

0,0η
T 

appears to be the self-energy matrix, which accounts for the contact to the semi-

infinite right portion of the lead.  To show that this is indeed the case we express GLR 

from Eq.(11-b) and substitute it into Eq.(11-a) 

    1  
R T

L L LR LRG i I H H g H        .  

By definition, the quantity ΣR, which should be added to HL, so that  

   1  L L RG i I H        

is the self-energy accounting for the contact with the right portion of the lead.  The non-

zero part of ΣR is 

    
1

0,0  
R T T

R Rg i I h     


          . 
  

(12-a) 

The latter equality constitutes the well known recursion relation for the self-energy, 

which can be proven as follows.  The upper-left corner sub-block g
(R)

0,0 of the semi-

infinite Green’s function matrix g
(R)

 corresponds to the rightmost unit cell of the semi-

infinite lead.  If this unit cell were not connected to the semi-infinite extension through its 

right boundary, the expression for g
(R)

0,0 would be g
(R)

0,0 = ((ε + i η) – h)
-1

.  By the defini-

tion, the connection to the semi-infinite lead through the right boundary amounts to the 

addition to the Hamiltonian, which is h in that case, the self-energy matrix ΣR, i.e. g
(R)

0,0 = 

((ε + i η) – h – ΣR)
-1

.  The analogous expression for ΣL is 

    
1

0,0  
LT T

L Lg i I h     


          . 
  

(12-b) 

 To obtain a computationally tractable non-recursive expression for ΣR we need to 

rewrite Eq.(11-c) in the sub-block form: 

   
RT T

LR LR L LR LRG H G H g H      

 

0,1 0,0

0

0 0 0 0

0

T

R

X X X X

G X X G

      
      
        

           

 

 
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0,1 0,0

0 0

0 0T

R

X X

G G

   
   

   
       

 , 

where X marks non-zero sub-blocks.  Equating low-right corner sub-blocks in the last eq-

uation, and using the symmetry of the Green’s function matrix, i.e. G1,0
T
 = G0,1, we obtain 

the compact analogues of Eq.(11-c): 

-1

0,0 1,0

-1

0,0 1,0

      ,

         .

T T

R

L

G G

G G





 

 
 

 

(11-d) 

Here G0,0, G1,0, and G0,1 are the Green’s function sub-blocks of the same size as η.  They 

are respectively diagonal, below diagonal, and above diagonal sub-blocks of the infinite 

Green’s matrix associated with the infinite translationally symmetric lead. 

 For the reasons that will become apparent in the next section it is convenient to 

express G0,0 through G1,0 and to use G1,0 as the only Green’s function sub-block involved 

in the self-energy computation.  This can be done by using the identity ((ε + i η) - H)G = 

1 for the infinite lead 

0,0 1,0 2,0

1,0 0,0 1,0

2,0 1,0 0,0

0

1

0

T T

T T

T T

I h G G G

I h G G G

I h G G G

 

  

 

   
   

  
   
       
   

     
   
   

 . 

  

 

(13) 

Multiplying central row by the central column we obtain the expression for G0,0 

   
1

0,0 1,0 1,0

T TG I h I G G  


         . 
  

(14) 

 

V. EXPRESSION FOR G1,0 

 

 G1,0 is the only sub-block of the Green’s function matrix of an infinite periodic 

lead, which is required for self-energy computation.  The Green’s function of the infinite 

lead is the infinite size matrix formally defined as (I (ε + i η) - H)
-1

, where H is the infinite 

Hamiltonian matrix.  The usual strategy for the computation of the Green’s function ma-

trix elements is to switch from local to plane-wave basis set.  As a result the infinite ma-

trix (I (ε + i η) - H) transforms to the finite size invertible matrix (I (ε + i η) – H[K]).  Af-
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ter that one needs to transform (I (ε + i η) – H[K])
-1

 back to the atomic orbital basis.  This 

reverse transformation involves integration over plane-wave variable K.  The numerical 

integration over K is imprecise and computationally expensive because (I (ε + i η) – 

H[K])
-1

 has van-Hove singularities along the real K-axis.  However, there is the elegant 

way to substitute the real-axis integration by the contour integration in the complex K-

plane.  We choose the contour for which the contour contribution to the integral vanishes, 

and the integral equals to the sum of the residues.   We start deriving the expression for 

G1,0 with the integral expression for the Green’s function.  The plane-wave basis func-

tions are chosen as 

   , ,
n

K A n Exp i K n 




   ,   a  {1, N}. 

  

  

(15) 

Here |n, α is α
th

 atomic orbital in the n
th

 unit cell, and A is the normalization factor.  In 

this basis the tri-block-diagonal Hamiltonian (Fig. 1(b)) has the form 

          

, ,

1 2 1 2

, ,

, , 0         .

TK H K H K Exp i K h Exp i K

K H K if K K

   
   

 

    

 
  

  

  

(16) 

In some cases it is more convenient to operate with variable Λ = Exp[i K].  Mapping K  

Λ is reversible if we agree that  -π  Re[K]  π.  Hence the alternative form for Eq.(16) is 

     

1

, ,

TH h
   

         
  

 (16-a) 

Next we invert (I (ε + i η) – H[K]) and return back to the atomic orbital basis.  The 

expression for the Green’s function matrix element is 

 
     

 

   

1

,

, ,
2

Exp iK m n
m G n I i H K dK



 


   






      . 

  

  

(17) 

The alternative to integration from – π to π along the real axis is the integration over the 

contour composed of three parts (Fig. 3): from -π to -π + i , from -π + i  to π + i , and 

from π + i  to π.  The integrals over the first and the third parts of the contour cancel be-

cause H[-π + i Im[K]] = H[π + i Im[K]].  To investigate the behavior of the integral over 

infinitely remote segment [π + i , π + i ] it is convenient to view the integrand in 

Eq.(17) as 



 14 

 
       

   

 

 

  

  

  

1 ,

,

1

2

i K
Exp iK m n M

I i H K e
Det I i H K

 

 

 

 
  



      
   

 . 

  

  

(18) 

Here Mα,β is minor for the corresponding element of matrix (I ε – H[K]).  As it follows 

from Eq.(16), the right hand side of Eq.(18) can be viewed as 

 

 

      

  

      

   

   

0 0

1 1

0 0

1 1

Im   
  

R R
i K n i K n i K n

n n n
i K i Kn n

S S
i K n i K n i K n

n n n

n n

K
B B e B e B B e

e e

A A e A e A A e

     

   

     

 

 
  

  

  

 

 
 , 

  

  

  

(18-a) 

where Ai and Bi are independent of K.  If η is non-singular, S = N, R = N – 1, and the ratio 

in the right hand side of Eq.(18-a) tends to 0 when Im[K]  .  In the case when η is sin-

gular, the largest possible R = S, and hence  

 

  

  

 

 

0

1

Im

0

1

R
i K n

n

n
S

K
i K n

n

n

B B e

Max Lim Const

A A e

 




 



  
  

   
  
    




 . 

  

  

  

(18-b) 

However, the exponential factor in front of this ratio makes it 0 for Im[K]  +.  There-

fore the contribution from the infinitely remote part of the integration contour is 0 regard-

less the type of η.  This is true only for the elements of the Green’s function α, m | G | n, β 

belonging to the sub-blocks lying below the main diagonal, i.e. for m > n, because only in 

this case the exponential factor in Eq.(17) tends to 0 as Im[K]  +.  For that reason we 

do not apply contour integration to evaluation of G0,0, but rather compute it through G1,0 

using Eq.(14). 

 The only contribution to the contour integral is from the poles (Fig. 4), thus 

Eq.(17) transforms to 

            

1

,

, , s s

s

m G n i Exp iK m n res I i H K
 

   
 

        
  . 

  

  

(19) 

Here the summation is performed over all poles Ks inside the contour, i.e. -π  Re[Ks] < π 

and Im[Ks]  0.  (I (ε + i η) – H[Ks])
-1

 can be expressed as  

    
   
 

  

 

1
T

n n

s

n n

C K C K
I i H K

i
 

  

 
  

 
 , where 

  

  

(20) 

Cn[K] and εn[K] are the eigenvector and corresponding eigenvalue of H[K], and 
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      

T

n n nH K C K C K     or         

T T

n n nC K H K C K  . 
  

(20-a) 

From Eq.(20-a) it follows that  nC K  and  nC K  are orthogonal, and we assume that 

these vectors are normalized  

    ,

T

i j i jC K C K      and      
T

i i

i

C K C K I  . 
  

(20-b) 

At the pole Ks one of the eigenvalues of H[Ks] is εr = (ε + i η).  In the vicinity of Ks only 

one term in the sum (20) is proportional to (K - Ks)
-1

: 

   
 

 
 

 

T

r s r s

r

s

K Ks

C K C K

K
K K

K








 



. 

  

  

(21) 

Thus, Eq.(19) can be rewritten as 

 
    

 
  

 

 

,
, ,

T

r s r s

s

s r

K Ks

C K C K
m G n i Exp iK m n

K

K

  





    




  . 

  

  

(22) 

The derivative in the denominator of Eq.(22) is computed in a usual manner: we multiply 

the Schrödinger equation by  rC k  and differentiate it over K 

               

  

  

T T

r r r r rC K H K C K K C K C K

K K

    


 
 . 

  

  

(23) 

Using Eqs.(20-a) and (20-b) we obtain 

 
 

 
 

  

  

Tr

r r

K H K
C K C K

K K

  
   

  
 , 

  

  

(24) 

where H[K]/K is computed using Eq.(16).  Assembling together Eqs.(24), (22), and 

(16), and keeping in mind that for the first sub-diagonal block m – n = 1, we obtain the 

expression for G10 

 
     

        

  

    

1,0

T

s r s r s

T T
s r s s s r s

Exp iK C K C K
G

C K Exp i K Exp i K C K


 


 

   
  , 

  

  

(25) 

which is identical to Eq.(7).  The poles positions, i.e. the values of Ks, and corresponding 

vectors  rC K  and  rC K  are obtained using transfer matrix technique.  Since H[-K] = 

H[K]
T
, for every pole Ks such that H[Ks]  r sC K  = εr  r sC K  there exists symmetric pole 
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-Ks such that H[-Ks]  r sC K  = H[Ks]
T
  r sC K  = εr  r sC K .  This explains the corres-

pondence between the sets { nC } and {
nC }, and hence the procedure described in step 2 

of section III.   

If Im[Ks]  0, only Ks lying inside the integration contour, i.e. with |Λs| < 1, should 

be included in the sum (25).  For real ε some poles may lie on the real axis: εr[Ks] = ε, 

Im[Ks] = 0.  In this case one needs to use first order expansion of εr[K] in the vicinity of 

Ks to determine which poles lie inside the contour, at the distance δKs infinitesimally 

above real axis.  The pole condition is formulated as εr[Ks + i δKs] = ε + i η, which in the 

first order approximation means i  εr[K]/ K = i η.  Since η > 0, the selection condition for 

the real axis poles is 

  

 

0r

K Ks

K

K









. 

 

That completes the proof of the algorithm presented in section III. 

 

VI. EXTENSION FOR MULTI-BLOCK-BAND HAMILTONIAN 

 

 If the interaction range between a unit cell and neighbor cells in a 1-D translation-

ally periodic lead is W > 1, the localized basis Hamiltonian matrix has 2  W + 1 block-

bands.  In the extended basis set given by Eq.(15) H[k] has the form: 

            
(0) ( ) ( )

   

1

R
n T n

n

H k h h Exp i k n h Exp i k n


     , 

  

  

(16-b) 

        
(0) ( ) ( )

   

1

 ,    
R

n T n n n

n

H h h h Exp i k   



     , 

  

  

(16-c) 

where h
(n)

 is the sub-block located n blocks above the main diagonal.  For the example 

depicted in Fig. 1(a) W = 2, and h
(0)

 = h, h
(1)

 = η, and h
(2)

 = χ.  The general case algorithm 

for the computation of {λi} and {ci}, such that H[λi]·ci = ε ci, and H[λ] is given by Eq.(16-

c), is provided in the next paper.  If {λi} and {ci} are known, one can choose two different 

ways to compute G10.  The simplest one is to obtain {Λi} and {Ci}, which are the solu-

tions of the corresponding tri-block-diagonal Eq.(16-a).  As it is shown in the next paper, 

Λi = λi
W

 and vectors Ci are obtained by joining vectors ci λi
n
 : Ci = {ci,  ci λi,  ci λi

 2
, …,  ci 

λi
W - 1

}.  After that, the algorithm from section III is applied without changes. 
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 The alternative is to assemble G10 from the sub-blocks of the same size as h
(n)

.  

For example, if W = 3 

3,0 2,0 1,0

1,0 4,0 3,0 2,0

5,0 4,0 3,0

g g g

G g g g

g g g

 
 

  
 
 

 ,  

  

where sub-blocks gm,0 are evaluated using the general expression for α, m | G | n, β 

(Eq.(22)): 

 
 

 

   

,0

( ) ( )

  

1

m T

s s s
m W

T n n n T ns

s s s s

n

c c
g

c n h h c




 




 

 
   
 




 . 

  

  

(22-a) 

This method is slightly faster because the denominator in Eq.(22-a) is the same for all 

gm,0, and needs to be calculated only once.  In other respects the multi-band case is treated 

in the same fashion as the tri-block-diagonal. 

 

VII. EXTENSION FOR SCREW SYMMETRY 

 

 We start the consideration of the screw symmetry with the tri-block-diagonal 

case.  Now sub-block matrixes h and η are different for different cells, but related to each 

other through the rotation around the screw axis (Fig. 5).  We pick up the cell with index 

0, and assume that its Hamiltonian sub-block is h, while the coupling matrix between the 

cells with indexes 0 and 1 is η.  Other sub-blocks of the infinite Hamiltonian describing 

1-D lead are related to h and η as follows from Eq.(26) 

2 2 2 2

2 2 1 1

1

1 1

1 2 2

0 0 0

0 0

0 0

0 0

0 0 0

T

T

T

T

R h R R R

R R R h R R R

H R R h

R h R R R

R R R h R



 

 

 



 

  



 

 

 
 

   
 
      
 

   
    
 

    
 
 

  . 

 

 

 

  

(26) 

Here R is the orbital rotation matrix, which is convenient to define through the Bloch 

theorem for 1-D systems with screw symmetry.  If Ci
(0)

 is the portion of the wave-vector 

corresponding to the unit cell with index 0, the wave-vector for the entire system is: 
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2 (0) 2

1 (0) 1

(0)

(0)

2 (0) 2

i i

i i

i i

i

i i

R C

R C

C C

R C

R C











 

 



 
 

  
  
 

  
  
 

  
 
 

   . 

 

 

 

  

(27) 

 

The analog of Eq.(15) for the system with a screw symmetry is 

   , ,n

n

K A R n Exp i K n 




   ,   a  {1, N}, 

  

  

(15-a) 

and hence the analog of Eq.(16-a) is 

        

T 1H R h R         . 
  

 (16-d) 

Here we used unitarity of R: R
-1

 = R
T
.  Thus, the only difference between screw and trans-

lational symmetries is the substitution of η by ηR.  The algorithm presented in section III 

can be used without changes provided η  ηR.  Now, however, the self-energies are not 

translationally invariant.  That means the algorithm in section III generates ΣL, which 

represents the effect of the contact with the left-going lead only for the boundary between 

unit cells with indexes –1 and 0.  Similarly ΣR represents the effect of the contact with the 

right-going lead only for the boundary between unit cells with indexes 0 and 1.  The self-

energy, which accounts for the contact with the left-going lead at the boundary between 

unit cells n – 1 and n is ΣL
(n)

 = R 

n
ΣL

(0)
R 

n
.  The self-energy, which accounts for the con-

tact with the right-going lead at the boundary between unit cells n and n + 1 is ΣR
(n)

 = R 

n
ΣR

(0)
R 

n
 (Fig. 6).  This transformation rule is equally applicable to the multi-block-band 

Hamiltonian.  Analogously to the multi-block-band case for the translationally symmetric 

system, Λi = λi
W

 and vectors Ci are obtained by joining vectors R
n
ci λi

n
 : Ci = {ci,  R 

1
ci λi,  

R 

2
ci λi

 2
, …,  R 

W - 1
ci λi

W - 1
}.  After that, the algorithm from section III is applied pro-

vided η  ηR. 
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VIII. LOCALIZATION LENGTH IN RANDOMLY DISTORTED NANO-TUBES 

 

 In this section we derive the expression for the current deviation from its ideal 

ballistic value for a randomly distorted nano-tube.  Derivation is based on Eq.(19), the 

general expression for α, m | G | n, β.  Knowing the dependence of the current deviation 

on the length of the distorted region we evaluate the localization length. 

 Based on the Eq.(2-a) and the Landauer’s equation (3-a), the contribution to the 

total current from the electrons with energy  is 

       
2

*
02

 4 Im Im
0 0

AB

A B R A B

he
I Tr G G

h
    

  
           

  
 . 

  

  

(3-b) 

Here GA+B is the Green’s function of an arbitrary portion of the lead, which is sub-divided 

in parts A and B, and hAB is the Hamiltonian coupling matrix between these parts.  If we  

choose A and B to be the adjacent unit cells located to the right from the distorted region, 

(Fig. 7), hAB = , and matrix R  corresponds to the ideal right-going lead.  The size of 

GA+B and R  is twice the size of .  To acknowledge that we use G22 and ΣRIdeal22 in-

stead of GA+B and R .  Since G22 corresponds to the perfect undistorted cells, its devia-

tion from the Green’s function of the perfect wire, which we denote as ΔG22 = GIdeal22 

- G22, is stipulated solely by ΔΣ22  ΣLIdeal22 - ΣL22.  The difference between I [ε] 

and the current in the perfect lead can be expressed as 
16

 

       
2

*

2 2 2 2 2 2

4
Tr Im ImIdeal

e
I I I G RIdeal G   


  

             
 . 

  

  

(28) 

Equation (28) is exact for any magnitude of ΔG22.  The first order expansion of ΔG22 

with respect to ΔΣ22 allows to transform Eq.(28) as 

  

 

2

2 2 2 2 2 2

* * *

2 2 2 2 2 2 2 2

4
Tr Im

Im .

e
I GIdeal L GIdeal

RIdeal GIdeal L GIdeal






  

   

     

      

  

  

  

  

(29) 

Next we use Eq.(12-b) to expand ΔΣL22 with respect to the distortion δH: 

      

      

1

0 0

1

0 0

 

       ,

TL i I H L

H i I H L

  

   





         

       

  

  

  

 

(30) 
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where subscript (0) marks the matrixes associated with the ideal lead.  Combining Eqs.(9-

a) and (12-b) we can write the two first terms of Eq.(30) as 

      
1

1

0,0 1,00 0
 T i I H G G  


           . 

  

(31) 

If Eqs.(30)-(31) refer to the entire region between the points 1 and 2 in Fig. 7, the size of 

matrixes in Eq.(30)-(31) is N(ND + NI).  Matrix T   contains only one non-zero sub-

block η
T
 located in the upper-right corner, which means that only the upper sub-block row 

in the product 1

0,0 1,0G G   differs from zero 

   0
1,0

2,01

0,0 1,0

 0
D I

D I

N N jL

N N j

Gi I h

G
G G

     

  

      
   
      
   
    

  

 . 

  

 
  

(32) 

In Eq.(32) we have explicitly shown the sub-blocks in j 
th

 column of matrix 1,0G .  In the 

following we suppose the diagonal form for the distortion δH.  If the sub-block of δH 

corresponding to j 
th

 unit cell is denoted as δhj, Eqs.(30)-(32) can be combined as 

   

   

1,0 2,0

1

1,0 2,0

 

       ,

D

D I D I

D I D I

N

L L N N j N N j

j

T T T

j N N j L N N j

i I h Ideal G G

h G i I h Ideal G

  

   

     



     

        

      


  

  

  

 

 

(33) 

where ΣIdealL is the self-energy at point 1 corresponding to the perfect left-going lead 

(Eq.(9-b)).  Further transformation of Eq.(33) utilizes the analog of Eq.(7-a), which fol-

lows from Eq.(19) 

1

,0[ ]  
T

n

nG i CS S VS CS       ,   n > 0 . 

  

(7-b) 

If we assume that NI is sufficiently large, the diagonal matrix 1D IN N jS    has non-zero 

entries only for |Λsα| = 1, all other elements vanish.  That means the product 

1D I
T

N N jS CS      contains only those vectors, which correspond to propagating waves, 

and hence 1D I
T

N N jS CS     = 1 †D IN N jS CS     .  Thus we can write Eq.(33) as 

T

L f A f    , where 
  

(34) 

 1 11 † * 1

1

D

D I D I

N
N N j N N j

j

j

A S VS CS h C VS S        



        
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   Lf i I h Ideal CS CS S            
  

 

It is convenient to assume that all |Λsα| = 1 are assembled in the upper part of ΛS.  Since 

Aα,β  0 only if both α and β correspond to the states, which can propagate in the ideal 

lead, all non-zero elements of A are located in the upper-left corner sub-block.  Substitut-

ing Eq.(34) into Eq.(29) we obtain 

 
2

*

, , , ,

, ,

4
Im    

Ne
I A J A F       

  




      , 

  

  

(35) 

where F = f
T

  G1,0
T

  η
T

  G0,0
*
  f

*
 appears to be the diagonal matrix, and J = f

†
  G1,0

†
  

Im[ΣIdealR] 
 
 G1,0  f.  We perform the statistical averaging of ΔI [ε] assuming the same 

dispersion ζ for all elements of δhj as well as no correlation between them.  We also sup-

pose that the distorted region is sufficiently long, so that ND >> 1.  The latter assumption 

means that we can neglect those terms in the sum (35), which contain “uncompensated” 

Λsn 
j
.  Therefore the summation over cell index j in Eq.(34) transforms to the factor ND in 

front of the sum (35).  The average of Eq.(35) is 

   

2
24

Im  D

e
I N J B F 


       . 

  

  

(36) 

Here vectors J  and F contain the diagonal elements of matrixes J and F, and elements 

of matrix B are 

   
 

2 2

, | | | |
Sq Sq

B Vs Vs Cs Cs     

      if |Λsα| = 1 and |Λsβ| = 1, 
  

 (37) 

and 0 otherwise.  Vector Csn
(Sq)

 contains absolute squared components of the correspond-

ing vector Csn.  J , F , and Csα
(Sq)

Csβ
(Sq)

 are smooth functions of ε and hardly participate 

in the energy dependence of ΔI.  On the contrary Vsα
-1

 strongly depend on ε showing van-

Hove singularities at the band edges.  Roughly speaking ΔI [ε] is proportional to the 

squared number of open channels and to the density of states in the fourth power. 

We apply Eqs.(36)-(37) to randomly distorted (11,10) nano-tube.  We use π-

orbital tight-binding in the nearest neighbor approximation with single hopping value Vππ 

= -2.7 eV.  Diagonal elements of δhj are random numbers in the interval [-0.05 eV, +0.05 

eV], which means that ζ
2
 = 0.05

2
 / 3.   The number of defective cells ND is 10

3
.  Smooth 

line in Fig. 8 corresponds to ΔI [ε] computed using Eqs.(36)-(37).  The rugged line is 

ΔI[ε] computed for the fixed set of random matrixes δhj, j = {1,…,10
3
}.  The most noti-
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ceable feature in Fig 8 is the very low current deviation from its ideal value at the first 

conduction step.  This effect is indeed descried by Eqs.(36)-(37): firstly, there are only 

four non-zero terms in quadratic form (36), which correspond to the two open channels.  

Secondly these channels have low density of states, i.e. low band curvature, as it can be 

confirmed using Fig. 4. 

 If the randomly distorted region is sufficiently long, the current decrease with the 

number of distorted cells can be approximated with exponential dependence I [ε, ND]  

   
 

, D
D Ideal

L

N
I N I Exp

N
 



 
  

 
 

  

   

(38) 

Comparing the linear expansion of Eq.(38) with Eq.(36) one may deem that  

      
   

1
2

24
 Im  L Ideal

e
N I J B F  





 
     

 
 .   (WRONG) 

  

  

(39) 

Equation (39), however, is incorrect, because during the derivation of Eqs.(36)-(37) we 

implied that electrons incoming towards the distorted region are equally distributed 

among all channels.  This is not true if the distorted region is so long that the current ex-

hibits exponential behavior (38).  For that case the majority of incoming electrons belong 

to one conducting channel least susceptible to the influence of distortion.  If this assump-

tion is imposed on the derivation of Eqs.(36)-(37), matrix B has non-zero entries Bα,β only 

if either α or β correspond to the “best conducting channel”, while Bα,β are still defined as 

   
 

2 2

, | | | |
Sq Sq

B Vs Vs Cs Cs     

   .  Example below shows matrix B, which corresponds 

to four open channels, with channel 3 being the least susceptible to distortion: 

   

1,1 1,2 1,3 1,4 1,3

2,1 2,2 2,3 2,4 2,3

3,1 3,2 3,3 3,4 3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4 4,3

0 0 0 0 0

0 0 0 0 0

0 0
  

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

B B B B B

B B B B B

B B B B B B B B
B B

B B B B B

   
   
   
   

     
   
   
   
   

. 

 

  

(40) 

This model assumes that electrons from the most robust channel, which carries most of 

the current, can be scattered to all open channels, and vice versa; all other scattering 

processes are assumed to be negligible. 
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 How do we find out, which channel is the most robust?  The simplest, though not 

the fastest way, is to compute ΔI [ε] using Eq.(36) and Eq.(40) assuming in turn every 

open channel to be the best conducting channel.  The channel, which corresponds to the 

smallest ΔI [ε] is the least sensitive to distortion.   

 It is possible to pick out the best conducting channel without testing every open 

channel.  For open channels |Λsα| = 1.  The deviation of Kα from the real value due to the 

Hamiltonian distortion results in |Λsα| < 1.  Even a small shift of Kα into a complex plane 

may shut the channel off due to the large number of the distorted cells: DNs  << 1.  

Thus, the best conducting channel must correspond to the lowest sensitivity of Kα to the 

Hamiltonian variation.  A good measure of such sensitivity is the derivative |Kα/ε| = 

|Vsα
-1

|.  The smallest |Vsα
-1

| guaranties that matrix B defined by Eq.(40) is associated with 

the lowest ΔI [ε].  Hence the localization length in terms of the number of unit cells is 

      
   

1
2

24
 Im  L Ideal

e
N I J B F  





 
     

 
 .  

  

  

(41) 

   
 

2 2

, | | | |
Sq Sq

B Vs Vs Cs Cs     

      if |Λsα| = 1 and |Λsβ| = 1 

and |Vsα| = Max[{|Vsα|}] or |Vsβ| = Max[{|Vsα|}] ; 

  

  

(42) 

Bα,β = 0 otherwise.  Plotted in Fig. 9 is NL [ε] computed using Eqs.(41)-(42) along the sta-

tistically computed NL
(Stat)

 [ε] 

   
 

 

1

0  .
Stat Ideal

L

I
N N Log

I








 
  

 
 

  

  

 (43) 

The averaging is performed over the ensemble of 750 distorted nano-tubes.  Each nano-

tube has N0 = 5000 distorted cells, and the elements of δh are evenly distributed within 

the interval [-0.5 eV, +0.5 eV].  The single channel approximation works well when the 

number of channels is small, e.g. 2, 4, 6 in the three lowest conduction steps.  In this case 

the differences between the channel susceptibilities to distortion are substantially large, 

and therefore for each energy there is well defined one robust channel.  As the number of 

open channels increases the difference between them becomes less pronounced and two 

or more channels begin to compete for major current transport.  Figure 10 contains the 

plots of Eq.(41) for all open channels, obtained by applying Eq.(40) to every open chan-

nel.  The smaller is the difference between the best conducting channels, the least appro-
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priate is the single channel approximation (41)-(42).  Both analytical and statistical 

curves follow the same trend: localization length decreases with the increase of the state 

density and the number of open channels.  Localization length has minima at the band 

edges. 

 

IX.  SUMMARY 

 

 We presented the non-recursive algorithm for computation of the self-energy ac-

counting for the contacts with 1-D semi-infinite leads.  The algorithm handles an arbi-

trary Hamiltonian types for leads with translational or screw symmetry.  Analytic expres-

sion (7) results in the corollaries explaining convergence properties of the recursive rela-

tions (12), and the current dependence on the Green’s function deviation (28), presented 

respectively in appendixes A and B.  The analytic expressions for the current deviation 

(36) and localization length (41)-(42) are also based on the generalization of Eq.(7). 
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APPENDIX A 

 

 We prove that Eqs.(12) can be used for iterative computation of ΣL[ε] and ΣR[ε] 

only if either Im[ε] > 0  or ε corresponds to zero density of states, i.e. lies within bandgap 

or outside spectral range of a lead.  We prove this statement for ΣL[ε], the proof for ΣR[ε] 

is similar.  The iterative relation for ΣL[ε] is 

    
1

Out In
 T

L LI h  


       . 

  

(A1) 

We assume that η is non-singular.  δΣL
(In)

 and δΣL
(Out)

 are respectively the deviations of 

ΣL
(In)

 and ΣL
(Out)

 from the true value ΣL, which satisfies Eq.(A1).  By using the first order 

expansion Eq.(A1) can be transformed to 

       
1 1Out In

  T

L L L LI h I h   
 

            . 
  

(A2) 

Defining matrix A  η
T
(ε I – h – ΣL)

-1
, Eq.(A2) can be rewritten in a compact form 

   Out In T

L LA A      . 
  

(A3) 

Combining Eqs.(9-a) and (12-b) we obtain 

 
1 1

0,0 1,0 T

LA I h G G 
        . 

  

(A4) 

Since η is assumed to be non-singular the contour contribution to the integral (17) vanish-

es and Eq.(19) can be applied to G0,0.  Similarly to Eq.(7-a) 

1

0,0[ ]  
T

G i CS VS CS     . 

  

(A5) 

For non-singular η matrix CS is square and invertible.  Combining Eqs.(7-a), (A4), and 

(A5) we obtain 

 
1T T

A CS S CS


     . 

  

(A6) 

Hence the eigenvalues of A are the elements of the diagonal matrix ΛS.  Equation (A3) 

can be rewritten in component form as 

     Out In

, ,
, ,

1 1

N N

L i j L
i j

A A 
 

  

     . 

  

(A7) 

One can view δΣL
(In)

 and δΣL
(Out)

 as the double-indexed vectors and   , , , , ,i j i j
A A a   

 as 

the double indexed matrix, which is the direct product of matrixes A and A
T
, i.e. a = 

AA
T
.  The eigenvalues of the direct product is the set of all possible double products of 
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the constituent matrixes.  That means the eigenvalues of a are all possible double prod-

ucts ΛSm ΛSn = Exp[i(Km + Kn)].  For the convergence of iterative procedure (A7) the ab-

solute values of all Exp[i(Km + Kn)] must be less than unity.  Since all Ki are either real or 

belong to the upper complex half-plane the condition | Exp[i(Km + Kn)] | < 1 Ki can be 

met only if | Exp[i(Km)] | < 1  Ki.  That means all Ki must have positive imaginary part.  

If for certain real energy ε the is no single purely real Ki, no states are allowed for ε, i.e. 

energy ε lies outside spectral energy range or inside the bandgap.  That completes the 

proof for non-singular η.  In the case when η is singular, one applies the limiting proce-

dure by using η + η instead of η, where η is infinitesimally small non-singular matrix.  In 

that case all finite eigenvalues are infinitesimally close to actual Λsm, and fictitious infini-

tesimally small eigenvalues do not influence the convergence.  That completes the proof. 
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APPENDIX B. 

Current in 1-D systems.  Quadratic dependence of the current deviation from the 

Green’s function deviation. 

 

 In this Appendix we derive the expression for the current deviation from its ideal 

value.  The problem setup is depicted in Fig.(B-1).  We pick two adjacent supercells A 

and B lying to the right from the distorted region.   

________________________________________________________________________ 

 

Figure B-1 

Problem setup. 

________________________________________________________________________ 

HInf and GInf are the Hamiltonian the Green's function for the entire (infinite) wire.  Ma-

trixes H22 and G22[] are respectively the sub-blocks of HInf and GInf associated with AB 

segment: 

2 2

T

A BA

BA B

G G
G

G G


 
  
 

,   2 2 T

h
H

h






 
  
 

 . 

  

(B1) 

We also define matrixes  

0

0 0




 
  
 

,    
 

2 2

0

0 0

LL




 
   

 
,    

 2 2

0 0

0 R

R 


 
   

 
. 

  

(B2) 

where L[], L[], are self-energy matrixes of the same size as h and .  The current cor-

responding to the particular energy  in 1-D wire is
14

 

       
2

*

2 2 2 2 2 2

4
Tr Im Im

e
I G L G    


  

           
. 

  

(B3) 

Based on  

     * *Im Im ImL RG G G G G        . 
  

(B4) 

Eq.(B3) can be rewritten as 
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 
2

*

2 2 2 2 2 2

4
Tr Im Im

e
I G R G 


  

        
. 

  

(B5) 

Since we assume that there are no defects to the right from AB, ΣR22 corresponds to the 

ideal contact.  To explicitly stress this fact, in the following we use ΣRIdeal22 instead of 

ΣR22.  IIdeal designates the current in the perfect wire 

 
2

*

2 2 2 2 2 2

4
Tr Im ImIdeal

e
I GIdeal RIdeal GIdeal 


  

        
, 

  

(B6) 

where GIdeal22 is the sub-block of the ideal lead Green’s function for two adjacent cells.  

As we prove in  the following, the difference IIdeal  - I is proportional to the square of 

the difference GIdeal22 - G22  G22: 

 
2

*

2 2 2 2 2 2

4
Tr Im ImIdeal

e
I I G RIdeal G 


  

           
, 

  

(B7) 

while the terms linear in G22 are zero: 

 

 

*

2 2 2 2 2 2

*

2 2 2 2 2 2

Tr Im Im

Tr Im Im 0  .

G RIdeal GIdeal

GIdeal RIdeal G





  

  

         

        

 

 

  

(B8) 

The proof of Eq.(B7) is equivalent to the proof of Eq.(B8), which can be rewritten as 

   
?

*

2 2 2 2 2 2Tr Im Im 0  .TG RIdeal GIdeal    
          

 

  

(B9) 

In transformation (B8)  (B9) we used the invariance of the trace under cyclic shifts and 

transposition.  Before proceeding with the proof of (B9) we express G22 as 

 

 

1

2 2 2 2 2 2 2 2 2 2

1

2 2 2 2 2 2 2 2 2 2

i I H RIdeal L G

i I H RIdeal LIdeal GIdeal

 

 



    



    

    

    
 

 

1 1

2 2 2 2 2 2 2 2LIdeal L G GIdeal 

        

 

  

 

 2 2 2 2 2 2 2 2 2 2 2 2 2 2G GIdeal G G LIdeal L GIdeal              , 
  

(B10) 

where ΣLIdeal22 is the self-energy of the ideal left contact.  Denoting T  ( T  ) and 

substituting Eq.(B10) into Eq.(B9) we obtain 
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   

   

*

2 2 2 2 2 2 2 2 2 2 2 2

?
*

2 2 2 2 2 2 2 2 2 2 2 2

Tr Im Im

Tr Im Im 0 .

G LIdeal L GIdeal RIdeal GIdeal T

LIdeal L GIdeal RIdeal GIdeal T G

     

     

            

            

 

  

 

(B11) 

The first two terms in the second line of Eq.(B11) can be represented as 

 2 2 2 2 2 2 2 2

0

0 0 0 0

L LIdeal a b
LIdeal L GIdeal GIdeal   

    
        

   
, 

  

(B12) 

where a and b are some matrixes, which structure is not important to us.  Then Eq.(B11) 

is rewritten as 

 
?

*

2 2 2 2 2 2Tr Im Im 0  .
0 0

a b
RIdeal GIdeal T G  

   
        

    

 

  

 

(B13) 

In the sub-block form Eq.(B13) is 

 

* *
?

0,0 1,0

* *

1,0 0,0

0 0 0
Tr Im 0

0 Im0 0 0

T T

A BA

T

R BA B

a b G G G G

Ideal G G G G





         
                         

, 

  

 

(B14) 

which can be presented as 

   
?

* *

1,0 0,0Tr Im Im 0T

R BA Ab Ideal G G G G           
  

. 

 

(B15) 

From the identity  

 

 

T
L A BA

T

R BA B

i I h G G
I

i I h Ideal G G

  

  

      
    

      
 

  

 

(B16) 

we obtain the expression for GBA and GA 

  

  

1

1

 .

A L R

T

BA R A

G i I h Ideal

G i I h Ideal G

 

  





    

     
 

  

 

(B17) 

Substituting Eq.(B17) into Eq.(B15) we obtain 

     1* *

1,0 0,0

?

Tr Im Im

0  .

T T

R R Ab Ideal G i I h Ideal G G    
             

    



 

 

 

(B18) 

Using the recursive relation for ΣIdealR, Eq.(B18) can be transformed to 

   
?

* *

1,0 0,0Tr Im Im 0T

R R Ab Ideal G Ideal G G         
  

 . 

 

(B19) 

The sufficient condition for the Eq.(B19) to be true is  
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   
?

*

1,0 0,0Im 0T

R RIdeal G Ideal G        . 

 

(B20) 

Before we start the proof of Eq.(B20), we take closer look at the imaginary part of G.  

First we assume that  is non-singular.  That means Eq.(A5) is valid for G0,0: 

   
 0,0[ ]  

T
Cs K Cs K

G i
Vs K

 

 







 . 

  

  

(B21) 

Next we need to show that if Im[K] > 0, then for every such K exists -K
*
, which also 

contributes to the sum (B21), and contribution from the pair K and - K
*
 is always real. 

     

 

 

** * *

†*

    

    

T

T

T

H K Exp i K h Exp i K

H K H K Exp i K h Exp i K

H K H K

  

   

 

 

 

   

               

   

. 

  

  

(B22) 

By definition of  C K  and  C K  

     

     

 

   ,
T

H K C K C K

H K C K C K

  

  





 

 
 

  

  

(B23) 

and 

     

     

* * **

† * **

 

   .

H K C K C K

H K C K C K

  

  





 

 
 

  

  

(B24) 

If  is real,  

 C K

*
 = *C K

    and  C K

*
 = *C K

   . 
  

(B25) 

Therefore  

          

         
* * ** * *

    

    

 T

T

V K i C K Exp i K Exp i K C K

V K i C K Exp i K Exp i K C K V K

    

     

 

 

    

                   

 

  

  

(B26) 

Equations (B25) and (B26) indeed show that contribution from K and - K
*
 to Eq.(B21) 

is real: 

   
 

   
 

* *

*
2 Im

T
T T

Cs K Cs KCs K Cs K Cs K Cs K
i i i

Vs K Vs KVs K

    

 

             
        

. 

  

  

(B27) 

Similarly the contribution from K and - K
*
 to G1,0 is also real: 
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   
 

 

   
 

 

  

 

* *

*

*

2 Im   .

T
T

T

Cs K Cs KCs K Cs K
i Exp i K i Exp i K

Vs K Vs K

Cs K Cs K
i Exp i K

Vs K

  
 

 

 




                  

 
 

  

 

  

 

 

  

(B28) 

Therefore the poles with non-zero Im[K], which appear in pairs do not contribute to the 

imaginary part of G.  If Im[K] > 0, but Re[K] = 0, H[K] is real, and hence the eigen-

vector C[K] is real, provided the corresponding eigenvalue  is real.  Therefore poles 

with Re[K] = 0 also do not contribute to the imaginary part of G.  The same argument 

pertains to Re[K] = ±.  Only the poles, which do not have symmetrical pairs, i.e. lying 

on the real axis, contribute to the imaginary part of the Green’s function.   

____________________________________________________________________________________________________________ 

 

Figure 2 

Poles K for randomly chosen h and .  Red circles mark the poles which contribute to 

the sum (B21). 

____________________________________________________________________________________________________________ 

In the following we use matrixes CS, CS , VS, and ΛS defined in section III, step 2.  Ad-

ditionally we assume that first M columns of CS and CS , correspond to real K’s.  For 

convenience that will be obvious further all other  C K , and  C K  (except purely real 

 C K , and  C K  corresponding to Re[K] = 0, ±) are arranged in pairs: vectors 

 C K  and *C K
     =  

*
C K  stand together.   Same for  C K  and *C K

   .  Since 

 is assumed to be non-singular, the dimensions of matrixes CS, CS , VS, and ΛS is NN.  
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Since η is non-singular, the contour contribution to the integral (17) vanishes and Eq.(19) 

can be applied to G0,0.  Similarly to Eq.(7-a) 

1

0,0  
T

G i CS VS CS    , 

  

(B29) 

1

1,0  
T

G i CS VS S CS     , 

  

(B30) 

and hence 

 

1 1

0,0 1,0 1,0 0,0

1
1   .

T T T

R R

T T T

Ideal G G Ideal G G

CS S CS CS S CS

 

   

 




         

      
 

  

(B31) 

Here we used Eqs.(9-a,b), and the symmetry of self-energy matrix L,R = L,R
T
.  The latter 

follows from Eqs.(12-a,b) since g0,0 is symmetric if energy and Hamiltonian are real.  

Now we return to the proof of Eq.(B20).  First we are going to show that 

 Im
0 0

0 0

T

R

X X

X X
CS Ideal

 
 
 
 

    
 
 
 
 

  , 

  

 

 

(B32) 

where the number of non-zero rows (marked X) equals the number of real K’s. 

   

    

  

1

1 1
† * †

1
† * †

Im Im

1

2

1

2

T T T T T

R

T T T T T T

T T T

CS Ideal CS CS S CS

CS CS S CS CS CS S CS

S CS CS CS S CS

 

   

  



 



        
  

         

     

 

  

  

(B33) 

The product CS
T
(CS

†
)
-1

 in the second term of Eq.(B33) is 

 
1

†

0 0 0 0

0 0

0 0 0 0

T

X X

X X
CS CS



 
 
 
 

   
 

 
 

 

  . 

  

  

  

(B34) 
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Here X mark the elements of the first M non-zero rows, corresponding to real K’s, and Ξ 

are 22 matrixes along main diagonal 

0 1

1 0

 
   

 
 . 

  

(B35) 

The structure of the matrix (B34) can be easily understood if one takes into account that 

(M + 1)
th

 row of CS
T
 and (M + 2)

th
 row of (CS

†
)
-1

 correspond to the same vector Csα.  

Therefore (M + 1)
th

 and (M + 2)
th

 rows of the product CS
T
(CS

†
)
-1

 have permuted 1’s from 

the main diagonal.  The same is true for all other pairs {K, K
*
} of complex K-vectors.  

Real Csα, if there are any, which represent Re[K] = 0, ±, do not have pairs.  These vec-

tors correspond to 1’s on the main diagonal.  Multiplication of the product CS
T
(CS

†
)
-1

 by 

the diagonal matrix S
*
 does not change the structure of the matrix (B34) 

 
1

† *

0 0 0 0

0 0

0 0 0 0

T

X X

X X
CS CS S



 
 
 
 

    
 

 
 

 

  , 

  

  

  

(B36) 

where  

0

0











 
   

 
 . 

  

(B37) 

Now, let us take a look at the last line in Eq.(B33).  The first term in the curly brackets is 

the matrix SCS
T
, which rows are vectors Csα multiplied by the corresponding eigenva-

lues S.  The second term is CS
T
(CS

†
)
-1
S

*
CS

†
.  The last N – M rows of matrix CS

†
 

are the permuted pairs of the rows of matrix CS
T
.  The multiplication of such a pair in 

CS
†
 by  constitutes the second permutation, which restores the order in the pair.  That 

makes the last N – M rows of the matrixes SCS
T
 and CS

T
(CS

†
)
-1
S

*
CS

†
 identical: 
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 
1

† * †

0 0

0 0

T T

X X

X X
S CS CS CS S CS 



 
 
 
 

       
 
 
 
 

  . 

  

 

 

(B38) 

That completes the proof of Eq.(B32).  We use Eqs.(B29-31) to transform Eq.(B20) as 

   

   
    

*

1,0 0,0

1 *

?1
1 † * †

Im

 Im

 Im 0

T

R R

T T
T

R R

T T
T

R

Ideal G Ideal G

i Ideal CS VS S CS Ideal CS

i Ideal CS VS S CS CS S CS CS



 

  






     

         

           

  

 

 

  

(B39) 

The factor Im[IdealR
*
]CS in Eq.(B39) is the transposed Eq.(B32).  The diagonal matrix 

VS
-1

 does not change the structure of Eq.(B32) 

  1

0 0

Im

0 0

R

X X

Ideal CS VS

X X



 
 
 
 

     
 
 
 
 

  . 

  

 

 

(B40) 

Since the first M rows of 
T

CS  are real they are identical to the first M rows of CS
†
.  

Hence the product in the first term in the parenthesis in Eq.(B39) is 

 
1

† *

1 0 0 0

0 1 0

0 0 1 0T

S CS CS S
X X

X X

 


 
 
 
 

     
 
 
 
 

 . 

 

 

 

(B41) 

Therefore the entire term in the parenthesis has the form 
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 
1

† * †

0 0

0 0T T

S CS CS S CS CS
X X

X X

 


 
 
 
 

       
 
 
 
 

 . 

 

 

 

(B42) 

Multiplication of the matrixes (B40) and (B42) is zero: 

0 0 0 0

0 0
0

0 0

X X

X X

X X X X

   
   
   
   

    
   
   
   
   

  . 

  

 

 

(B43) 

That completes the proof of Eq.(B20) for non-singular .  In the case when η is singular, 

one applies the limiting procedure by using η + η instead of η, where η is a small non-

singular matrix.  In the limit η  0 all actual eigenvalues and eigenvectors are infinite-

simally close to respective Λsα and Csα, while fictitious infinitesimally small eigenvalues 

and corresponding eigenvectors do not affect the course of the proof.  That completes the 

proof of Eq.(B20) and hence Eq.(B7). 
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FIGURES 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

 

Figure 1 

Normalizing Hamiltonian to the tri-block-diagonal form.  (a) Translationally periodic in-

finite lead (top) and the infinite block-band Hamiltonian in the second neighbor approxi-

mation associated with the lead.  τ and χ are the coupling matrices to the first and second 

unit cell neighbors respectively.  (b)  The increase of the unit cell size eliminates the inte-

raction beyond the first nearest neighbor, and “transforms” Hamiltonian to the tri-block-

diagonal structure. 
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Figure 2 

Illustration to definition of L and R.  The infinite lead containing defective region three 

unit cells long (upper portion), and the corresponding Hamiltonian matrix. 
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Figure 3 

Contour for complex K-plane integration. 
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Figure 4 

Poles positions for (11, 10) nano-tube.  Squares mark the poles, which contribute to the 

contour integral.  Poles are computed for the nearest neighbor π-orbital tight-binding 

model.  Bottom portion of the figure contains the nano-tube band-structure plot.  Hori-

zontal line marks the energy ε = -7.12345 eV, for which the poles have been computed.  

The loci of the poles for a certain energy range constitute the so called “real energy 

lines”, which can be also viewed as complex K band-structure. 
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Figure 5 

Schematic illustration of 1-D system with screw symmetry.  Matrix η0 couples cells with 

indexes 0 and 1; η-1 couples cells with indexes -1 and 0.  η-1 is identical to η0 in the coordi-

nate system attached to the cell with index –1: η-1 = R
-1
η0R.  Here R is the orbital rotation 

matrix associated with the screw angle.  
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Figure 6 

Self-energy transformation example for the system with screw symmetry.  ΣL
(-3)

 and ΣR
(2)

 

account for the contacts represented by the shaded areas, while ΣL
(0)

 and ΣR
(0)

 are generat-

ed by the algorithm descried in section III, provided the substitution η  ηR is made.  ΣL
(-

3)
 = R 

-3
ΣL

(0)
R 

3
 and ΣR

(2)
 = R 

2
ΣR

(0)
R 

-2
. 
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Figure 7 

Problem setup for current calculation. 
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Figure 8 

ΔI for (11,10) nano-tube.  The smooth (green) line corresponds to Eqs.(36)-(37).  Rough 

(brown) line was obtained through direct simulation for the given random defect distribu-

tion by “growing” the defective region through the recursive computation of the self-

energy. 
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Figure 9 

Localization length as a function of energy for (11,10) nano-tube.  Smooth line corres-

ponds to the analytic expressions (41)-(42), rough line is obtained using statistical aver-

aging.  IIdeal[ε] is plotted for reference in arbitrary units. 
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Figure 10 

Localization length for (11,10) nano-tube measured in numbers of unit-cells.  Thin 

smooth lines correspond to the analytic expressions (41)-(42) applied in turn for all open 

channels.  Rough line corresponds to the localization length obtained through the statis-

tical averaging.  Thick red line is IIdeal[ε] plotted for reference in arbitrary units. 
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