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It is assumed that the reader has basic knowledge on nanotubes.  Mathematically strict and con-

cise introduction can be found in Ref. [1].  All 4 problems have detailed solutions along with the 

images of Mathematica scripts used to generate solutions.  Students are encouraged to reproduce 

and run these simple scripts (I believe that this is a good way to get acquainted with Mathemati-

ca for novices).  All problems exploit screw and rotational symmetry of nanotubes.  That makes 

solutions simple (often analytical), comprehensible and elegant.  From looking at large number 

of publications on nanotubes the author get convinced that only small fraction of researches 

(even theoreticians) utilizes symmetry properties of nanotubes.  No surprise that the authors of 

nanohub tool CNTBANDS do not utilize it either.  One of the goals pursued by this tutorial is to 

amend such unfortunate state of affairs. 

 

PROBLEM 1 

Nanotube indexes n1 and n2 define vector 1 1 2 2R n R n R  , which determines the way how sin-

gle-wall nanotube (SWNT) is rolled up. 

 

Figure 1 

 



2 

 

The primitive unit cell of any SWNT contains just two atoms separated by a distance equal to the 

bond length (two bold dots in Fig. 1).  The positions of all other atoms in SWNT can be obtained 

by applying screw and rotation operations to the coordinates of atoms residing in a single primi-

tive unit cell.  Rotation operation rotates atomic positions around SWNT axis by 
2 m

N


, where N 

is the greatest common divisor of n1 and n2 and m is non-negative integer lesser than N.  Screw 

operation shifts atom along the SWNT axis by h H R R   and rotates by angle 

 
2

2 H R R   , where 1 1 2 2H p R p R  , and p1 and p2 are integers.  Prove that 

2 1 1 2p n p n N    

Solution: 

Assumption: when the SWNT is rolled up, Fig. 1 is mapped on the cylinder surface with the ra-

dius equal to 2r R  .  As a result of such mapping, the interatomic distance changes.  We 

assume that no structural relaxation occurs when graphene sheet is rolled up into SWNT.  There-

fore we can use plain geometry for expressing the chiral vector H  through, 1n , 2n 1R , and 2R .  

The only additional condition one needs to keep in mind is that all geometrical equations are 

“modulo R ”, i.e. atomic positions separated by vector R  are equivalent. 

The condition for chiral vector H  can be found from equating area AUC of a primitive unit cell 

multiplied by N (because there are N equivalent primitive unit cells in the same cross-section of 

SWNT) to the area on the SWNT corresponding to a single screw operation: 

1 2 1 1 2 2 1 1 2 2

1 2 1 2 1 2 2 1 1 2

1 2 2 1

  

( ) ( )   

  

UCA N R H

R R N n R n R p R p R

R R N n p R R n p R R

N n p n p

  

     

     

 

 

The last equation is equivalent to 2 1 1 2p n p n N   .  That finishes the proof.  The uncertainty in 

sign is due to possibility of applying screw operation in either direction along the SWNT axis.  If 
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H  is a screw vector, then H mR  is also a valid screw vector (m is integer).  This uncertainty is 

due to the cyclic boundary conditions. 

It is worthwhile to make sure that any atom of the graphene sheet can be translated to the primi-

tive unit cell at the origin by applying translation vector (or, equivalently, by applying screw and 

rotation operations) 

1 1 2 2
1 1 2 2( )

n R n RR
a bH a b p R p R

N N


    , 

where a and b are integers.  If the desired unit cell is located at 1 2xR yR  (x and y are integers), 

then 

1 1 2 2
1 2 1 1 2 2( )

n R n R
xR yR a b p R p R

N


    . 

Solving for a and b: 

2 1

1 2

a p x p y

n y n x
b

N

 




 

Indeed, a and b are integers because x, y, n1, n2, p1, and p2 are integers, and N is common divisor 

of n1 and n2.   

 

PROBLEM 2 (Prerequisite: Problem 1.   , N and screw operator are defined in Problem 1) 

Bloch theorem can be extended to 1-D systems with helical and rotational symmetries.  Unit cell 

with indexes  ,m n  is obtained from the unit cell with indexes  0,0  through application of m 

consecutive rotations by angle 
2

N


 and n consecutive screw operations.  If the wave function in-

side the primitive unit cell  0,0  is  0,0
r  
 

, the wave function in the unit cell  ,m n  is 

                
, 0,0

2
exp 2

m n

m
r n r i k n i l m N

N


   

               
.  Here    is the operator, 
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which rotates vector r  around SWNT axis by angle  , l is a branch integer index running from 

0 to N – 1, and k is a real scalar in the range  ,  .  Show that in the  -orbital tight-binding 

approximation the two-component wave-function has a form:  

               , ; 0,0; exp 2j jC m n l C l i k m i l n N  . 

Here index j denotes atom in the unit cell (j = 1,2),  0,0;jC l  is the wave function component in 

unit cell  0,0  and  , ;jC m n l  is the wave function component in unit cell  ,m n . 

Solution: 

Suppose one uses sp
3
 localized basis set to solve for electronic states of SWNT and  

 , , ,,
{ , , }

,i j i j i jm n
x y z

r R a i j p r R







     
     

is a linear combination of p-orbitals centered on i-th atom of j-th unit cell, such that the axis of 

, ,i j i jr R


  
 

 (which is p-orbital itself) is normal to the SWNT surface.  Then, it appears that 

the contribution of , ,i j i jr R


  
 

 to the electronic states of SWNT approximately within energy 

range of  2 eV with respect to the Fermi level substantially exceeds contributions from any oth-

er sp
3
 combinations.  Thus, functions , ,i j i jr R


  

 
 can be chosen as a new basis set with just 

one p-orbital per atom.  If m screw and n rotation operations transform i-th atom residing in the 

unit cell with index 0 to i-th atom residing in unit cell j, then 

 , , ,0 ,0

2
i j i j i i

m
n r R r R

N


  

                
. 

The wave function in the unit cell at the origin (i.e. m = 0, n = 0) is a linear combination of two 

atomic orbitals ,0 0,i jr R


  
 

: 

   
2

0,0 ,0 0,

1

0,0;j i j

j

r C l r R 


  
  . 

Using Bloch theorem the same wave function in the unit cell with indexes m and n is 
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, 0,0

2

0, 0,

1

2

, ,

1

2
exp 2

2
0,0; exp 2

, ;

m n

j j j

j

j i j i j

j

m
r n r i k n i l m N

N

m
C l n r R i k n i l m N

N

C m n l r R


   


  







  
        

  

  
        
  

 
 





 

Because functions 
, ,i j i jr R  
 

 (for j = 1,2) constitute a complete basis within unit cell, the pre-

factors in the second and the third lines of equation above must match for each j.  That results in 

the following equation for wave function components:  

               , ; 0,0; exp 2j jC m n l C l i k m i l n N   

 

PROBLEM 3 (Prerequisites: Problems 1 and 2.  N, p1, and p2 are defined in Problem 1) 

Show that in the  -orbital tight-binding nearest neighbor approximation band structure  E k  of 

 1 2,n n  SWNT can be expressed analytically (Ref. [1] has this equation, but does not include its 

complete derivation): 

 
   1 2 1 21 1 2 2

22 2
3 2 cos cos cos

n n k l p pn k lp n k lp
E k V

N N N

         
                

 

Here l is the index of dispersion brunch running from 0 to N – 1, k is a real scalar in the range 

 ,  , and V is Hamiltonian matrix element between nearest neighbors.   

Solution: 

Electronic states in the infinitely long SWNT are described by an infinite set of complex vectors 

  ,kC l .  The Hamiltonian matrix H in localized basis representation has infinite dimensions, 

and vectors  ,kC l  have infinite length.  Indexes   and k  refer respectively to the energy of 

electronic state and its k-number associated with screw symmetry.  Integer l  lying in the range 0, 

N – 1 indexes dispersion branches associated with different rotational symmetries.  The compo-
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nent of  ,kC l  associated with j
th

 atom in the unit cell (j = 1,2) is denoted as  , , ;k

jC m n l .  In-

dexes m and n denote respectively the number of screw and rotation operations required to trans-

form the unit cell at the origin to the unit cell associated with component  , , ;k

jC m n l .  The 

Schrödinger equation can be formally written as  

   , , k kH C l C l    

From this infinite set of linear equations we select two equations associated with the unit cell at 

the origin: 
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Using the results obtained in Problem 2: 
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The problem has converged to 2×2 eigenproblem.  To obtain analytical equation for dispersion 

we need the expressions for m and n.  Figure 2 below uses grey shade to mark unit cells neigh-

boring the unit cell at the origin (with m = 0, n = 0).  Unit cells are marked with red indexes and 

blue indexes mark atoms within unit cells. 
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Figure 2 

To obtain m and n for unit cell marked in Fig. 2 with index 1 we equate its position with respect 

to the origin ( 1R ) to the displacement resulting from m screw and n rotation operations 

(
R

m nH
N
 ): 

 1 1 2 2
1 1 1 2 2

n R n RR
R m nH m n p R p R

N N


     . 

The solution of the linear system above is: m = p2, n       n2/N.  Solutions for m and n for cells 

marked with indexes 2, 3, and 4 are respectively {m       p1, n = n1/N}, {m       p2, n = n2/N}, and 

{m = p1, n       n1/N}.  Figure 3 presents Mathematica script generating these solutions. 
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Figure 3 

Substituting the first and the second {m, n} sets to the third term of the equation below and the 

third and fourth sets into the second term 
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we obtain 2×2 matrix: 

1 1 2 2

1 1 2 2

2 2

2 2

0 1 e e

1 e e 0

n k p l n k p l
i i

N N N N

n k p l n k p l
i i

N N N N

V

 

 

   
     
   

   
     

   

 
  

 
 
  

. 

Figure 4 presents Mathematica script generating Hamiltonian matrix above and the expression 

for its squared eigenvalues.  In Figs. 4 and 5 Hamiltonian matrix element V (also called hopping 

or coupling energy) factors out and is assumed to be unity.  To include coupling energy the final 

equation should be multiplied by V.  That finishes the proof. 
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Figure 4 

 

Figures 5(a, b) list the Mathematica script used to generate the dispersion plots for (30, 6) 

SWNT.  Blue vertical lines mark extrema of dispersion curves.  When unit cell is chosen to be 

translationally symmetric, i.e. include many primitive unit cells, band folding occurs at these 

lines.  Not all lines mark the Brillouin zone boundary for translationally invariant unit cell, but 

all zone boundaries match these lines (due to the periodicity of dispersion in k-space derivatives 

of E[k] at zone boundaries are zero).  
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Figure 5-a 
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Figure 5-b 
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PROBLEM 4 (Prerequisites: Problems 1, 2 and 3) 

Prove that in the  -orbital tight-binding nearest neighbor approximation absolute values of 

group velocities for electrons with energies equal to the Fermi level are the same in graphene and 

metallic nanotubes.  

Solution: 

Note: Only numerical solution for this problem is provided because I was not able to find for all 

possible {n1, n2} the analytical dependence of branch index(es) and values of k for which E[k] = 

0.  When n1 and n2 are relatively prime (i.e. do not have common integer divisor except 1) there 

are only two dispersion branches each satisfying condition E[k] = 0 only at k0 = 2 /3 (provided 

n1     n2 = 3q; q is an integer).  When n1 and n2 are not relatively prime, for SWNT’s with n1     n2 

= 3q dispersion E[k] turns to zero at either k0 = 0 or k0 = 2 /3.  I failed to obtain analytical de-

pendence of k0 on  n1 and n2 for that case. 

To compare group velocities we need the dispersion law of graphene grE k 
 

 (dispersion law 

 E k  for arbitrary SWNT has been derived in Problem 3).  We follow the same approach as in 

Problem 3: determine the nearest neighbors and phase factors of the Bloch functions for them.  

Then, we collect all non-zero terms in two rows of the infinite Hamiltonian matrix associated 

with the unit cell at the origin.  We can reuse Fig. 2 for this purpose.  The only difference is that 

now k is a 2-component vector instead of a scalar. 

Translational basis vectors depicted in Fig. 2 are  1 3,0R   and  2 3 2,3 2R   (for brevity 

lattice constant is assumed to be 1).  As in Problem 3 the Schrödinger equation for infinite 2D 

system can be formally written as  

, , k k

grH C E k C   
 

, 

where H and ,kC  expressed in localized basis have infinite dimensions.  Indexes of vectors  

,kC  and ,kH C  run from      ∞ to + ∞.  In this problem only indexes 1 and 2 are important: or-

bitals with these indexes are located on the corresponding atoms residing in the unit cell at the 

origin.  According to Bloch theorem the only difference between components of ,kC  associated 
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with unit cell at the origin and unit cell with index 3 in Fig. 2 is the phase factor 1iR k
e
   (because 

cell marked with index 3 in Fig. 2 is shifted by 
1R  with respect to the origin).  The correspond-

ing contribution to rows 1 and 2 in vector ,kH C  is 

1

,

1

,

2

0

0 0

k

i R k

k

CV
e

C





 
  
       

,  

where ,

1

kC  and ,

2

kC  are wave function components in the unit cell at the origin.  Applying the 

described above operation to unit cells 0, 1, 2, and 4 we obtain: 

1 1

2 2

, ,

1 1

, ,

2 2

0 0 0 0

0 0 0 0

0 0 0

0 0 0

i R k i R k

k k

i R k i R k

gr
k k

V V
e e

V V

C CV
e e E k

V C C

 

 

  

   

     
       

     

      
                      

 

The terms in pretences at the left-hand side correspond respectively to interaction within the unit 

cell at the origin, unit cell at the origin and cells 3, 1, 4, and 2.  After assuming that Cartesian 

components of  1 2,k k k , and substitution of values for iR , the eigenproblem above trans-

forms to: 

1 2

1

1 2

1

3 3

2 23

, ,

1 1

, ,3 3
2 22 23

0 1

1 0

i k k
i k

k k

gr
k k

i k k
i k

V e e

C C
E k

C C
V e e

 

 

 
       

 
       

  
   
              

              
   

  

 

Analytical expression for eigenvalues k  
 

 is: 

1 1 2

3 3
3 2cos 3 4cos cos

2 2
grE k V k k k
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Figure 6 below presents the lower dispersion branch of 
grE k 
 

.  The reciprocal vectors corres 

Figure 6 

ponding to 1R  and 2R  are  1 2 3 , 2 3K     and  2 0,4 3K  .  The points at which low-

er and upper dispersion branches touch each other are located at 
4

cos[ ],sin[ ]
3 33 3

n

F

n n
K

   
  

 
, 

where integer n   0 …5.  Green lines in Fig. 6 are drawn from the origin in k-space to n

FK .  Tay-

lor expansion of the upper dispersion branch in the vicinity of 0

FK is  

   1 2 1 2

3
,

2

n

gr FE K k k V k k      
 

 



15 

 

That means the gradient of 
grE k 
 

 (which equals group velocity if 1 ) in the vicinity of n

FK  

is 3/2 in any direction.  Figures 7 (a-c) present the above portion of the solution in Mathematica 

format.  Hopping energy V factors out and is assumed to be unity. 

 

Figure 7-a 
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Figure 7-b 
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Figure 7-c 

Next we compute group velocities in SWNT.  To account for helical structure of SWNT we need 

to recall that the wave function acquires an additional phase factor of ike  when the shift h along 

SWNT axis constitutes the projection of helical vector on this axis (arrow on top of H  should 

prevent the confusion from using the same letter for Hamiltonian and helical vector): 

R H
h

R


 . 

The group velocity for 1D translationally periodic structures is 

 1 E k
v

k





 . 

Here k varies within ,
a a

  
  
 

 and a is the translational period.  If k scaled to vary within 

 ,   , the equation for group velocity includes extra factor a: 
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 E ka
v

k





. 

The wave function 1 r  
 

 in helical structure inside slice of thickness h normal to SWNT axis is 

related to the value of the same wave function in the slice shifted by nh along SWNT axis as: 

 iknr nh e n r       
   

. 

Here vector h  is collinear to SWNT axis and has length h defined above, operator    rotates 

vector r  around SWNT axis by angle  , and  is a helical angle (Problem 1).  If one follows 

the derivation of the equation for group velocity, it becomes clear that it has the same form re-

gardless of the presence of operator  n  .  In the equation for  E k  derived in Problem 3, k  

varies within  ,   , therefore one needs to include the “slice” thickness in the equation for 

electron velocity: 

 E kh
v

k





. 

For SWNT with relatively prime indexes n1 and n2 (i.e. N = 1 and l = 0) the equation for velocity 

can be derived analytically.  For metallic SWNT’s with n1 – n2 = 3q bands touch or cross (de-

pending on n1 and n2) always at 2 3k  .  This is demonstrated by Mathematica script in Fig. 8 

below.  Given that n1 and n2 are relatively prime and n1 – n2 = 3q, index n1 can be always written 

as 1 3 1n m  , where m is an integer (if n1 = 3s, n1 and n2 are not relatively prime). 
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Figure 8 

At 2 3k   the dispersion function  E k  has a cusp, so the derivative does not exist at this 

point.  Derivatives at 2 3 0k    and 2 3 0k    have different signs.  Therefore instead of 

differentiation, we have to perform Taylor expansion at e.g. 2 3 0k   .  Mathematica script 

presented in Fig. 9 is used to compute the derivatives for 1 3 1n m  .  The first equation below is 

for  1 3 1n m  , the second one is for 1 3 1n m  . 

 
   

 
1
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3 1
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Multiplying these equations by h we get the electron group velocity along SWNT axis.   
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Figure 9 

Calculation of 
R H

h
R


  requires to use the equation (Problem 1) 2 1 1 2 1p n p n   (since N = 1) 

to express either p1 or p2.  The first equation below is h for 1 3 1n m  , the second one is for 

1 3 1n m  . 

   

   

1

1

3 1

2

3 1

2

1

1
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1
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3

n m

n m

h

m m q q q

h

m m q q q

 

 



    



    

 

 

Multiplying these equations by respective 
 E k

k




, one gets the group velocities, which are inde-

pendent of SWNT indexes as long as n1 and n2 are relatively prime and n1 – n2 = 3q.  Group ve-
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locity equals 3/2, which coincides with the group velocity in graphene. (the value is unitless be-

cause we assumed 1 , V = 1, and lattice parameter a = 1).  If these constants are included, 

3

2

a V
v  . 

Figure 10 below presents Mathematica script completing the proof for the case when n1 and n2 

are relatively prime. 

 

Figure 10 

All metallic SWNT’s cross or touch Fermi level either at 2 3k   or 0k  .  We can numerical-

ly compute the group velocities for these points for large range of n1 and n2 to make sure that the 

velocities for all types of metallic SWNT’s are indeed equal 3/2.  Figure 11 below presents Ma-

thematica script used to test all indexes 13 100n   and 2 10 n n  .  Because calculations are 

still symbolic, the results are rational numbers (i.e. 3/2).   
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Figure 11 
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