Article Index

- “Michigan Nano Computational Cluster” (MNC2)
- 1D Transient Heat Conduction CDF Tool
- A Brief Overview of Nanotechnology Adoption by Industry
- a TCAD Lab
- ABACUS—Introduction to Semiconductor Devices
- ACUTE—Assembly for Computational Electronics
- All Spin Logic
- ANTSY—Assembly for Nanotechnology Survey Courses
- AQME Advancing Quantum Mechanics for Engineers
- Band Bending and Potential & Kinetic Energies Lesson
- Band Structure Lab Learning Materials
- BJT Lab Learning Materials
- Bonding Model Lesson
- Bound States Lab Learning Materials
- Boundary Layer Flow Solution
- Bulk Monte Carlo Learning Materials
- Bulk-Charge Theory Lesson
- C(60) Fullerene and DNA
- Carbon Nanotube Fracture
- Carbon nanotubes and graphene nanoribbons
- Carrier Statistics Lab Learning Materials
- Carriers in Semiconductors Lesson
- CDF Tools for Heat Transfer
- Closed Captioning (CC) for nanoHUB Videos
- Closed Captioning (CC) for nanoHUB videos: Downloading CC Text Files
- CNT Bands Challenge Problem
- CNT Bands Learning Materials
- CNT Bands Problems
- Computational Optoelectronics Course
- Continuity Equations Lesson
- Crystal Viewer Tool Learning Materials
- Crystalline Structure
- Data Archiving
- Density of States Lesson
- Derivation of Planck's Law
- Diffusion Lengths Lesson
- Diffusion Lesson
- Drift Current Lesson
- Drift Lesson
- Drift-Diffusion Lab Learning Materials
- EE 3329 - Electronic Devices Syllabus
- Effective Mobility Lesson
- Electronics from the Bottom Up: A New Approach to Nanoelectronic Devices and Materials
- Electronics from the Bottom Up: Summer School 2012
- Electronics from the Bottom Up: Summer School 2012 Registration and Housing Information
- Equilibrium Carrier Concentrations Lesson
- Fin Temperature CDF Tool
- French & American Young Engineering Scientists Symposium 2009
- GAMESS (General Atomic and Molecular Electronic Structure System)
- Get Started Developing Tools for nanoHUB.org
- GlobalHUB—The Global Engineering HUB
- GNR Challenge Problem
- Help: Admonitions
- Help: Includes
- Help: Index
- Help: Page History
- Help: Templates
- Help: Wiki Formatting
- Help: Wiki HTML
- Help: Wiki Macros
- Help: Wiki Math
- Help: Wiki Page Names
- How to Create Online Presentations using Powerpoint
- How to Translate Closed Captions for nanoHUB Videos on YouTube
- How to turn on Closed Captioning for nanoHUB videos on YouTube
- How to Turn on Closed Captioning for nanoHUB Videos on YouTube
- Inter-Valley vs. Intra-Valley Scattering in Zigzag-Edge Graphene Nano-Ribbons
- Introduction to Quantum Chemistry and Molecular Modeling
- Introduction to Reliability
- Introduction to the Unix command line
- Key Electronic Properties of Carbon Nano Tubes
- KeyPropertiesGNR
- LAMMPS (Large-Scale Atomic/Molecular Massively Parallel Simulator)
- Learning Module: Atomic Picture of Plastic Deformation in Metals
- Learning Module: Bonding and Band Structure in Silicon
- Lessons from Nanoscience
- Lessons from Nanoscience: Information for Prospective Authors
- Lundstrom Group
- madFETs
- Main Page
- Main Page
- Main Page
- MEEP (MIT Electromagnetic Equation Propagation)
- Mobility and Scattering Lesson
- Molecular dynamics simulations of materials
• Molecular Modeling and Electronic Structure Calculations with QC-Lab
• MOSCap Learning Materials
• MOSCap Tool on nanoHUB.org
• MOSFet Learning Materials
• Nanobiotechnology Resources for K-12
• nanoHUB Assessment
• nanoHUB Environments
• nanoHUB Resources for K-12
• nanoHUB Virtual Organization
• nanoHUB.org Publications on Impact
• nanoHUB.org Style Guide 1.5
• nanoHUB: Author Incentives
• nanoHUB: Impact On Education
• nanoHUB: Lowering Barriers to Modeling and Simulation
• nanoHUB: Research use for NCN internal Research and Development
• nanoHUB: Social Network of Citations
• nanoHUB: Use by Experimentalists
• nanoHUB: Use of External Resources by External Researchers
• nanoHUB_remote
• NCN at Berkeley Tools
• NCN at Illinois Tools
• NCN at Northwestern Tools
• NCN at Purdue Tools
• NCN Nano Electro-Mechanical Systems
• NCN Nano-Devices for Medicine and Biology
• NCN Nanoelectronics
• NCN Nanomaterials
• NCN Nanophotonics and Metamaterials
• NCN Student Banquet
• NCN Student Research Symposium 2009
• NCN URE Communicating Science Resources
• NCN URE Research and Graduate School Resources
• NCN Workshop on Simulation-Based Learning: Exploring Semiconductors, Nanoelectronics, and Beginning Chemistry
• NCN-NEEDS Summer Schools
• NCN@Purdue student seminar series
• NCN@Purdue Students
• NEMO3D
• New Research Computation Mathematics for Science Engineering & Design Technology:
• NEWT Educational Resources
• Notes on the quantum of thermal conductance
• OMEN
• OMEN Nanowire Lab Learning Materials
• Optical and thermodynamic properties of gold metal nanoparticles. Effect of chemical functionalization.
• Periodic Potential Lab Learning Materials
• Physiotherapie Berlin
• Piece-Wise Constant Potential Barriers Tool Learning Materials
• PN Junction Lab Learning Materials
• PN Junction: Qualitative Analysis Lesson
• Polymer Service
• Primer on the MOSFET Simulator on nanoHUB.org
• Prospectus
• Purdue Workshop—Predictive materials modeling and simulations: nano- and micro-mechanics
• Quantum Chemistry for Engineers: Nanohub Nanoscience Projects
• Quantum Dot Lab Learning Materials
• Quasi-Fermi Levels Lesson
• Radial 1D Heat Conduction in 3 Regions
• Recombination of Electrons Lesson
• Resonant Tunneling Diode Learning Materials
• Resources for Materials Science and Engineering
• Resources for Volume 1
• Resources for Volume 2
• Retinal Isomerization
• Role of Normal Processes in Thermal Conductivity of Silicon
• SCHRED Learning Materials
• Semiconductors Composition Lesson
• Semiconductors Structure Lesson
• Session Archaeology
• Simplifying the Minority Carrier Diffusion Equations Lesson
• Simulation of laser devices with ActiveMedia nanophotonics tool (ACME NPDS)
• Square-Law Theory Lesson
• Submit a Prospectus:
• Summer School 2011
• Summer School Schedule
• The Band Gap Energy and Material Classification Lesson
• The Bohr Model of the Atom
• The Energy Band Model Lesson
• The Fermi Function Lesson
• The Ideal Diode Equation Lesson
• The NEGF Approach to Nano-Device Simulation
• The One-Dimensional Minority Carrier Diffusion Equations Lesson
• The Threshold Voltage Lesson
• ThermalHUB
• Trip to Argonne, Spring 2009
• Verification of the Validity of the CNTBands Tool
• ZT to COP Thermoelectric CDF Tool