By completing the OMEN Nanowire Lab, users will be able to understand a) the operation of nanowire FETs, b) the effect of bandstructure on the carrier transport in nanowire FETs, and c) the effect of geometry of nanowire on the drain current characteristics in nanowire FETs.

The specific objectives of the OMEN Nanowire Lab are:

Recommended Reading

Users who are new to the concept of nanowire FETs and the simulation methods that are useful
for understanding their characteristics should consult the following resources:

- [Mark Lundstrom, Nanoscale Transistors](#) for a basic understanding on MOS transistors.
- [Joerg Appenzeller, What Promises do Nanotubes and Nanowires Hold for Future Nanoelectronics Applications?](#)
- [One-dimensional Materials](#)
- [Monica Taba, Investigation of the Electrical Characteristics of Triple-Gate FinFETs and Silicon-Nanowire FETs](#)
- [Saumitra R. Mehrotra, et al., Threshold voltage](#)
- [Mark Lundstrom, Subthreshold conduction](#)

Demo

- [Video Demo](#)
- [First Time User Guide](#)
- [Supporting Document – Limitation of the Tool at Large Gate Voltage](#)

Theoretical Descriptions

- [Mathieu Luisier, et al., Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations, Physical Review B 74, 205323, 2006](#)
- [Mathieu Luisier, Quantum Transport for Nanostructures](#)
- [Dragica Vasileska, et al., Tight-Binding Bandstructure Calculation Method](#)

Tool Verification

- [Benchmarking Top-of-the-Barrier Model by Abhijeet et al.](#)

Examples

- [First time user guide slide 15-18](#)

Homework

- [OMEN Nanowire Homework Problems](#)

Solutions to Exercises

- Solutions to exercises are provided only to instructors!
Evaluation

- OMEN Nanowire Test Problems

Challenge

Users are challenged to integrate what they have learned about OMEN Nanowire Lab in the following module:

- solve the challenge