Quantum Dot Lab Learning Materials

By completing the Quantum Dot Lab, users will be able to a) understand the 3D confinement of carriers in a quantum dot, b) describe effects of geometry of a quantum dot on the energy states of carriers, and c) study light absorption of a quantum dot.

The specific objectives of the Quantum Dot Lab are:

- **Physical Model**
 - Introduce the concept of:
 - 3D confinement of carriers
 - Light absorption in a quantum dot

- **Mathematical Model**
 - Apply numerical techniques for calculating:
 - 3D wave-function in a quantum dot
 - Energy states in a quantum dot
 - Optical absorption strength in a quantum dot

- **Computational Model**
 - Design and simulate your own quantum dot structures.

Recommended Reading
Users who are new to quantum mechanics should consult the following materials:

Demo

- [First time user guide for quantum dot lab](#)
- [Introduction to quantum dot lab](#)
- [Quantum dot lab tool demonstration](#)

Theoretical Description

- [Quantum dots](#)
- [Introduction to Quantum Dots and Modeling Needs/Requirements](#)
- [Introduction to the NEMO3D Tool](#)

Tool Verification

Examples

- [Introduction to quantum dot lab slide 19-30](#)

Exercises and Homework Assignments

- [Exercise](#)

Solutions to Exercises

- Solutions are provided only to Instructors!

Evaluation

- [Test for Quantum Dot Lab tool](#)

Challenge

- [Quantum dot – Design a laser](#)