Resonant Tunneling Diode Learning Materials

By completing the Resonant Tunneling Diode Simulation with NEGF, users will be able to: a) understand the principle of operation of resonant tunneling diode, b) the meaning of the quasibound states, resonant and non-resonant tunneling and c) the concept of quantum interference which is the basis for the formation of quasi-bound states and the operation of a Resonant Tunneling Diode.

The specific objectives of the Resonant Tunneling Diode Module are:

<table>
<thead>
<tr>
<th>Physical Model</th>
<th>Mathematical Model</th>
<th>Computational Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Introduce the concept of:</td>
<td>b) Apply Mathematical techniques for calculating:</td>
<td>c) Validate Resonant Tunneling Diode Lab by running the examples provided</td>
</tr>
<tr>
<td>- Quantum interference</td>
<td>- Transmission Coefficient</td>
<td>provided</td>
</tr>
<tr>
<td>- Quasi-bound states</td>
<td>- Current density</td>
<td></td>
</tr>
<tr>
<td>- Resonant Tunneling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommended Reading
Users who are new to the principles of operation of a resonant tunneling diode should consult the following resource:

Theoretical descriptions

* Resonant Tunneling Diode operation
* RTD with NEGF Demonstration: Basic RTD Asymmetric
* NEMO 1-D: The First NEGF-based TCAD Tool and Network for Computational Nanotechnology
* Application of the Keldysh Formalism to Quantum Device Modeling and Analysis

Exercises and Homework Assignments

1. Exercise: Resonant Tunneling Diode

Solutions to Exercises

Solutions are provided only to instructors!

Evaluation

This test will assess the users conceptual understanding of the physical, mathematical and computational knowledge related to operation of Resonant Tunneling Diodes.

Challenge

Users are challenged to integrate what they have learned about operation of Resonant Tunneling Diodes.

Resonant Tunneling Diodes: an Exercise