Publications: All

  1. compactmodel x
  1. Stanford 2D Semiconductor (S2DS) Transistor Model

    2018-08-15 02:33:34 | Compact Models | Contributor(s): Saurabh Vinayak Suryavanshi, Eric Pop | doi:10.4231/D39882Q1F

    The Stanford 2D Semiconductor (S2DS) model is a physics-based, compact model for field-effect transistors (FETs) based on two-dimensional (2D) semiconductors such as MoS2.
  2. Compact model for Perpendicular Magnetic Anisotropy Magnetic Tunnel Junction

    2018-04-16 17:57:57 | Compact Models | Contributor(s): You WANG, Yue ZHANG, Weisheng Zhao, Jacques-Olivier Klein, Dafiné Ravelosona, Hao Cai, Lirida Naviner

    This STT PMA MTJ model integrates the physical models of static, dynamic behaviors and reliability issues, which can be used to perform more accurate and complex reliability analysis of complex hybrid circuits before fabrication.
  3. CNRS - Carbon Nanotube Interconnect RC Model

    2017-11-09 16:25:31 | Compact Models | Contributor(s): Jie LIANG, Aida Todri | doi:10.4231/D3SJ19T14

    This CNT Interconnect Compact Model includes a solid physics understanding and electrical modeling for pristine and doped SWCNT as Interconnect applications. SWCNT resistance and capacitance are modeled in Verilog-A.
  4. Purdue Solar Cell Model (PSM) - Perovskite/a-Si (p-i-n)

    2018-04-16 17:56:34 | Compact Models | Contributor(s): Xingshu Sun, Raghu Vamsi Krishna Chavali, Sourabh Dongaonkar, Suhas Venkat Baddela, Mark Lundstrom, Muhammad Ashraful Alam | doi:10.4231/D3862BC8C

    Purdue Solar Cell Model (PSM), previously known as the TAG (technology agnostic) model, is a suite of compact models developed for solar cells of c-Si, a-Si, perovskites, CIGS, CdTe, and HIT. This package is for perovskite and a-Si solar cells.
  5. Purdue Solar Cell Model (PSM) - HIT

    2018-04-16 18:09:10 | Compact Models | Contributor(s): Xingshu Sun, Raghu Vamsi Krishna Chavali, Sourabh Dongaonkar, Suhas Venkat Baddela, Mark Lundstrom, Muhammad Ashraful Alam | doi:10.4231/D3CV4BS80

    Purdue Solar Cell Model (PSM), previously known as the TAG (technology agnostic) model, is a suite of compact models developed for solar cells of c-Si, a-Si, perovskites, CIGS, CdTe, and HIT. This package is for perovskite and a-Si solar cells.
  6. Purdue Solar Cell Model (PSM) - Si

    2018-04-16 18:09:34 | Compact Models | Contributor(s): Mark Lundstrom, Muhammad Ashraful Alam, Raghu Vamsi Krishna Chavali, Sourabh Dongaonkar, Suhas Venkat Baddela, Xingshu Sun | doi:10.4231/D3HM52M18

    Purdue Solar Cell Model (PSM), previously known as the TAG (technology agnostic) model, is a suite of compact models developed for solar cells of c-Si, a-Si, perovskites, CIGS, CdTe, and HIT. This package is for c-Si solar cells.
  7. Purdue Solar Cell Model (PSM) - CIGS/CdTe

    2018-04-16 18:09:56 | Compact Models | Contributor(s): Xingshu Sun, Sourabh Dongaonkar, Raghu Vamsi Krishna Chavali, Suhas Venkat Baddela, Mark Lundstrom, Muhammad Ashraful Alam | doi:10.4231/D3NC5SD6H

    Purdue Solar Cell Model (PSM), previously known as the TAG (technology agnostic) model, is a suite of compact models developed for solar cells of c-Si, a-Si, perovskites, CIGS, CdTe, and HIT. This package is for CIGS/CdTe.
  8. Thermoelectric Device Compact Model

    2017-03-27 13:46:21 | Compact Models | Contributor(s): Xufeng Wang, Kyle Conrad, Jesse Maassen, Mark Lundstrom | doi:10.4231/D3PN8XG7R

    The NEEDS thermoelectric compact model describes a homogeneous segment of thermoelectric material and serves as a basic building block for complex electrothermal system.
  9. Double-Clamped Silicon NEMS Resonators Model

    2016-03-07 16:45:06 | Compact Models | Contributor(s): Yanfei Shen, Scott Calvert, Jeffrey F. Rhoads, Saeed Mohammadi | doi:10.4231/D37659G7N

    This model is built for a silicon-based, double-clamped (source and drain), double-gate beam. The model takes into account capacitive modulation with the two gates, piezoresistive modulation through the beam and electrical parasitic elements.
  10. MVS Nanotransistor Model (Silicon)

    2015-12-02 17:03:59 | Compact Models | Contributor(s): Shaloo Rakheja, Dimitri Antoniadis | doi:10.4231/D3RR1PN6M

    The MIT Virtual Source (MVS) model is a semi-empirical compact model for nanoscale transistors that accurately describes the physics of quasi-ballistic transistors with only a few physical parameters.
  11. MVS III-V HEMT model

    2015-12-01 16:40:24 | Compact Models | Contributor(s): Shaloo Rakheja, Dimitri Antoniadis | doi:10.4231/D37S7HT39

    The MIT Virtual Source (MVS) model is a semi-empirical compact model for nanoscale transistors that accurately describes the physics of quasi-ballistic transistors with only a few physical parameters. This model is designed for HEMT.
  12. MVS Nanotransistor Model

    2015-12-01 15:13:44 | Compact Models | Contributor(s): Shaloo Rakheja, Dimitri Antoniadis | doi:10.4231/D3416T10C

    The MIT Virtual Source (MVS) model is a semi-empirical compact model for nanoscale transistors that accurately describes the physics of quasi-ballistic transistors with only a few physical parameters.
  13. CCAM Compact Carbon Nanotube Field-Effect Transistor Model

    2015-10-07 14:56:43 | Compact Models | Contributor(s): Michael Schroter, Max Haferlach, Martin Claus | doi:10.4231/D3VD6P595

    CCAM is a semi-physical carbon nanotube field-effect transistor model applicable for digital, analog and high frequency applications.
  14. MIT Virtual Source GaN HEMT-High Voltage (MVSG-HV) compact model

    2015-08-31 13:49:15 | Compact Models | Contributor(s): Ujwal Radhakrishna, Dimitri Antoniadis | doi:10.4231/D3086365H

    MIT Virtual Source GaN HEMT-High Voltage (MVSG-HV) model is a charge based physical model for HV-GaN HEMTs suitable for power switching applications.
  15. Verilog-A implementation of the compact model for organic thin-film transistors oTFT

    2015-06-16 12:26:13 | Compact Models | Contributor(s): Ognian Marinov | doi:10.4231/D3R785Q3B

    Compact model oTFT supports mobility bias enhancement, contact effects, channel modulation and leakage in organic thin-film transistors. Version 2.04.01 “mirrors” TFT in all regimes of operation by DC, AC and transient simulations.
  16. Berkeley VCSEL Compact Model

    2015-06-02 18:58:52 | Compact Models | Contributor(s): Adair Gerke, Connie J. Chang-Hasnain | doi:10.4231/D3T43J40H

    The U.C. Berkeley Vertical Cavity Surface Emitting Laser (VCSEL) Compact Model provides a circuit simulator compatible Verilog-A model of VCSEL lasers, primarily for use in designing direct-modulation driver circuits for optical interconnects.
  17. III-V Tunnel FET Model

    2015-04-21 13:49:00 | Compact Models | Contributor(s): Huichu Liu, Vinay Saripalli, Vijaykrishnan Narayanan, Suman Datta | doi:10.4231/D30Z70X8D

    The III-V Tunnel FET Model is a look-up table based model, where the device current and capacitance characteristics are obtained from calibrated TCAD Sentaurus simulation.
  18. Stanford Virtual-Source Carbon Nanotube Field-Effect Transistors Model

    2015-04-09 14:21:12 | Compact Models | Contributor(s): Chi-Shuen Lee, H.-S. Philip Wong | doi:10.4231/D3BK16Q68

    The VSCNFET model captures the dimensional scaling properties and includes parasitic resistance, capacitance, and tunneling leakage currents. The model aims for CNFET technology assessment for the sub-10-nm technology nodes.
  19. UCSB 2D Transition-Metal-Dichalcogenide (TMD) FET model

    2015-03-25 17:05:28 | Compact Models | Contributor(s): Wei Cao, Kaustav Banerjee | doi:10.4231/D37940V7H

    a compact model for 2D TMD FET considering the effect of mobility degradation, interface traps, and insufficient doping in the source/drain extension regions
  20. mCell Model

    2015-01-20 00:40:32 | Compact Models | Contributor(s): David M. Bromberg, Daniel H. Morris | doi:10.4231/D3CR5ND3Q

    This model is a hybrid physics/empirical compact model that describes digital switching behavior of an mCell logic devices, where a write current moves a domain wall to switch the resistance of a magnetic tunnel junction between stable states.