Tags: III-V materials/devices

Papers (1-4 of 4)

  1. III-V Nanoscale MOSFETS: Physics, Modeling, and Design

    Papers | 28 Jun 2013 | Contributor(s):: Yang Liu

    As predicted by the International Roadmap for Semiconductors (ITRS), power consumption has been the bottleneck for future silicon CMOS technology scaling. To circumvent this limit, researchers are investigating alternative structures and materials, among which III-V compound semiconductor-based...

  2. Device Physics Studies of III-V and Silicon MOSFETS for Digital Logic

    Papers | 28 Jun 2013 | Contributor(s):: Himadri Pal

    III-V's are currently gaining a lot of attraction as possible MOSFET channel materials due to their high intrinsic mobility. Several challenges, however, need to be overcome before III-V's can replace silicon (Si) in extremely scaled devices. The effect of low density-of-states of III-V materials...

  3. Quantum and Atomistic Effects in Nanoelectronic Transport Devices

    Papers | 28 Jun 2013 | Contributor(s):: Neophytos Neophytou

    As devices scale towards atomistic sizes, researches in silicon electronic device technology are investigating alternative structures and materials. As predicted by the International Roadmap for Semiconductors, (ITRS), structures will evolve from planar devices into devices that include 3D...

  4. Exploring New Channel Materials for Nanoscale CMOS

    Papers | 28 Jun 2013 | Contributor(s):: Anisur Rahman

    The improved transport properties of new channel materials, such as Ge and III-V semiconductors, along with new device designs, such as dual gate, tri gate or FinFETs, are expected to enhance the performance of nanoscale CMOS devices. Novel process techniques, such as ALD, high-# dielectrics, and...