Tags: NEMS/MEMS

Description

The term Nanoelectromechanical systems or NEMS is used to describe devices integrating electrical and mechanical functionality on the nanoscale. NEMS typically integrate transistor-like nanoelectronics with mechanical actuators, pumps, or motors, and may thereby form physical, biological, and chemical sensors.

Microelectromechanical systems (MEMS) (also written as micro-electro-mechanical, MicroElectroMechanical or microelectronic and microelectromechanical systems) is the technology of very small mechanical devices driven by electricity; it merges at the nano-scale into nanoelectromechanical systems (NEMS) and nanotechnology.

MEMS are separate and distinct from the hypothetical vision of molecular nanotechnology or molecular electronics. MEMS are made up of components between 1 to 100 micrometres in size (i.e. 0.001 to 0.1 mm) and MEMS devices generally range in size from 20 micrometres (20 millionths of a metre) to a millimetre. They usually consist of a central unit that processes data, the microprocessor and several components that interact with the outside such as microsensors

Learn more about NEMS/MEMS from the many resources on this site, listed below. More information on NEMS/MEMS can be found here.

Compact Models (1-2 of 2)

  1. Physics-Based Compact Model for Dual-Gate Bilayer Graphene FETs

    06 Apr 2016 | Compact Models | Contributor(s):

    By Jorge-Daniel Aguirre Morales1, Sébastien Frégonèse2, Chhandak Mukherjee3, Cristell Maneux3, Thomas Zimmer3

    1. CNRS, University of Bordeaux, IMS Laboratory 2. CNRS, IMS Laboratory 3. University of Bordeaux, IMS Laboratory

    A compact model for simulation of Dual-Gate Bilayer Graphene FETs based on physical equations.

    https://nanohub.org/publications/133/?v=1

  2. Released Resonant Body Transistor with MIT Virtual Source (RBT-MVS) Model

    30 Aug 2015 | Compact Models | Contributor(s):

    By Bichoy W. Bahr1, Dana Weinstein1, Luca Daniel1

    Massachusetts Institute of Technology (MIT)

    An RBT is a micro-electromechanical (MEM) resonator with a transistor (FET) incorporated into the resonator structure to sense the mechanical vibrations. This is a fully-featured spice-compatible...

    https://nanohub.org/publications/72/?v=1