Tags: quantum mechanics

Description

Quantum mechanics (QM), also known as quantum physics or quantum theory, is a branch of physics providing a mathematical description of much of the dual particle-like and wave-like behavior and interactions of energy and matter. It departs from classical mechanics primarily at the atomic and subatomic scales, the so-called quantum realm. In advanced topics of QM, some of these behaviors are macroscopic and only emerge at very low or very high energies or temperatures.

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum mechanics can be found here.

Online Presentations (1-20 of 35)

  1. ECE 606 L4.1: Quantum Mechanics - Classic Systems

    20 Jul 2023 | | Contributor(s):: Gerhard Klimeck

  2. ECE 606 L4.3 Quantum Mechanics - Why Do We Need Quantum Mechanics?

    20 Jul 2023 | | Contributor(s):: Gerhard Klimeck

  3. ECE 606 L4.4: Quantum Mechanics - Formulation of Schrödinger's Equation

    20 Jul 2023 |

  4. Quantum Information Science--The 2022 Nobel Prize Backstory

    03 Mar 2023 | | Contributor(s):: David D. Nolte

    This lecture gives the backstory to the 2022 Nobel Prize in Physics. It presents a cast of characters starting with Einstein distrusting his own invention, David Bohm, a rare physicist exiled by the US government, and John Bell of CERN, who began his high-school education on a financial needs...

  5. MSEN 201 Lecture 1.2: Atomic Structures - Quantum Mechanics

    13 Feb 2019 | | Contributor(s):: Patrick J Shamberger

  6. Bringing Quantum Mechanics to Life: From Schrödinger's Cat to Schrödinger's Microbe

    01 Nov 2016 | | Contributor(s):: Tongcang Li

    In this talk, I will first give a brief introduction to basic concepts in quantum mechanics and the Schrödinger's cat thought experiment. I will then review developments in creating quantum superposition and entangled states and the realization of quantum teleportation. Non-trivial quantum...

  7. E304 L5.2.1: Nanomechanics - Quantum Mechanics of Oscillation

    12 May 2016 | | Contributor(s):: Elena Nicolescu Veety, ASSIST ERC

  8. E304 L3.1.2: Nanoscale Physics - Planck's Contribution to Quantum Mechanics

    26 Feb 2016 | | Contributor(s):: ASSIST ERC

  9. Quantum Mechanics for Everyone

    03 Jun 2015 | | Contributor(s):: Erica W. Carlson

    Does an observer determine reality?  Can I use quantum mechanics to create my own reality?  Quantum mechanics takes us into the wild and wacky world of the really small where particles are waves, waves are particles, and the physical intuition we have from our everyday life...

  10. Lecture 1: The Wigner Formulation of Quantum Mechanics

    18 Nov 2014 | | Contributor(s):: Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the Wigner formulation of Quantum Mechanics which is based on the concept of quasi-distributions defined over the phase-space.

  11. Lecture 2: The Wigner Monte Carlo Method for Single-Body Quantum Systems

    18 Nov 2014 | | Contributor(s):: Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the Wigner Monte Carlo method applied to single-body quantum systems.

  12. Lecture 3: The Wigner Monte Carlo Method for Density Functional Theory

    18 Nov 2014 | | Contributor(s):: Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the Wigner Monte Carlo method in the framework of density functional theory (DFT).

  13. Lecture 4: The ab-initio Wigner Monte Carlo Method

    18 Nov 2014 | | Contributor(s):: Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses the ab-initio Wigner Monte Carlo method for the simulation of strongly correlated systems.

  14. Lecture 5: Systems of Identical Fermions in the Wigner Formulation of Quantum Mechanics

    18 Nov 2014 | | Contributor(s):: Jean Michel D Sellier

    In this lecture, Dr. Sellier discusses about systems of indistinguishable Fermions in the Wigner formulation of quantum mechanics.

  15. Quantum Beauty: Real and Ideal

    15 Apr 2013 | | Contributor(s):: Frank Wilczek

    Does the world embody beautiful concepts? Mystics and philosophers long imagined that it should, and scientists gathered hints that it does, but it is really only in the twentieth century, with the development of quantum theory, that the answer emerged as a triumphant "Yes!" I'll...

  16. ECE 606 Lecture 4: Periodic Potentials Solutions of Schrödinger's Equation

    14 Sep 2012 | | Contributor(s):: Gerhard Klimeck

  17. ECE 606 Lecture 2: Quantum Mechanics

    14 Sep 2012 | | Contributor(s):: Gerhard Klimeck

  18. Application-driven Co-Design: Using Proxy Apps in the ASCR Materials Co-Design Center

    31 May 2012 | | Contributor(s):: Jim Belak

    Computational materials science is performed with a suite of applications that span the quantum mechanics of interatomic bonding to the continuum mechanics of engineering problems and phenomenon specific models in between. In this talk, we will review this suite and the motifs used in each of the...

  19. Development of the ReaxFF reactive force fields and applications to combustion, catalysis and material failure

    12 Sep 2011 | | Contributor(s):: Adri van Duin

    This lecture will describe how the traditional, non-reactive FF-concept can be extended for application including reactive events by introducing bond order/bond distance concepts. Furthermore, it will address how these reactive force fields can be trained against QM-data, thus greatly enhancing...

  20. PfFP Lecture 30: Quantum Physics II

    27 Apr 2011 | | Contributor(s):: Jerry M. Woodall