Tags: computational science/engineering

Online Presentations (1-20 of 40)

  1. A Condensed Matter Physics class and a Course-Based Undergraduate Research Experience (CURE) with the MIT Atomic-Scale Modeling Toolkit

    07 Nov 2022 | | Contributor(s):: David Strubbe

    In this presentation, Dr. Strubbe will discuss how he has been using the MIT Atomic-Scale Modeling Toolkit as a part of his undergraduate and graduate class on condensed matter physics. In discussion sections, simulations are performed to illustrate concepts like covalent bonding,...

  2. Density Functional Theory: Introduction and Applications

    07 Nov 2022 | | Contributor(s):: André Schleife

    In this webinar, Dr. Schleife will briefly outline the fundamentals of DFT, and demonstrate how to use Quantum Espresso in nanoHUB to compute electronic structure, electronic densities of state, total energies, and bulk modulus for example materials.

  3. Don't Try These in the Real World

    18 Jun 2012 | | Contributor(s):: Lee W. Schruben

    Simulation models provide virtually unlimited power; or rather, they provide unlimited virtual power. If you can think of something, you can simulate it. Experimenting in a simulated world, you can change anything, in any way, at any time - even change time itself. Simulators are gods, ruling in...

  4. ECE 612 Lecture 21: On Becoming a True Technology Developer

    02 Dec 2008 | | Contributor(s):: Mark Lundstrom

  5. Examples for QuaMC 2D particle-based device Simulator Tool

    10 May 2008 | | Contributor(s):: Dragica Vasileska, Shaikh S. Ahmed, Gerhard Klimeck

    We provide three examples that demonstrate the full capabilities of QuaMC 2D for alternative device technologies.

  6. Illinois 2011: Dr. Shah Yunus - Future of Innovation

    30 Nov 2011 | | Contributor(s):: Shah Yunus, Nadia Jassim

    Dr. Shah Yunus: Operational Vice President for Product Development, ESI-Group.

  7. Interactive Modeling of Materials with Density Functional Theory Using the Quantum ESPRESSO Interface within the MIT Atomic Scale Modeling Toolkit

    03 Nov 2022 | | Contributor(s):: Enrique Guerrero

    We will explore the Quantum ESPRESSO interface within the MIT Atomic-Scale Modeling Toolkit with interactive examples. We will review the basics of density functional theory and then focus on the tool’s capabilities.

  8. Micromechanics of Polycrystals: Full-field Computations and Second-order Homogenization Approaches

    30 May 2012 | | Contributor(s):: Ricardo Lebensohn

    In the first part of this talk we will present a spectral formulation based on crystal plasticity and Fast Fourier Transforms (FFT) for the determination of micromechanical fields in plastically-deformed 3-D polycrystals. This formulation, pioneered by Suquet and coworkers as a fast algorithm to...

  9. Microstructure Modeling with OOF2 and OOF3D

    26 Aug 2022 | | Contributor(s):: Andrew Reid, Stephen Langer

    The OOF object-oriented finite element software, developed at the National Institute of Standards and Technology, provides an interactive FEM tool which packages sophisticated mathematical capabilities with a user-interface that speaks the language of materials science...

  10. MSE 498 Lesson 10: MD

    16 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  11. MSE 498 Lesson 11: MD

    16 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  12. MSE 498 Lesson 12: MD

    16 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  13. MSE 498 Lesson 13: MD

    16 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  14. MSE 498 Lesson 14: MD

    16 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  15. MSE 498 Lesson 15: MD

    16 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  16. MSE 498 Lesson 16: FEM

    16 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  17. MSE 498 Lesson 17: FEM

    16 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  18. MSE 498 Lesson 18: CALPHAD

    16 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  19. MSE 498 Lesson 19: CALPHAD

    16 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...

  20. MSE 498 Lesson 1: CMSE

    13 Mar 2015 | | Contributor(s):: Andrew Ferguson

    This new course will give students hands-on experience with popular computational materials science and engineering software through a series of projects in: electronic structure calculation (e.g., VASP), molecular simulation (e.g., GROMACS), phase diagram modeling (e.g., Thermo-Calc), finite...