Tags: III-V materials/devices

Online Presentations (1-9 of 9)

  1. Discussion Session 1 (Lectures 1a, 1b and 2)

    08 Sep 2010 | | Contributor(s):: Supriyo Datta

  2. Is Graphene Alone in the Universe?

    05 Dec 2012 | | Contributor(s):: Jacob B. Khurgin

    In this talk we show that many heterostructures based on III-V (InGaSb) and II-VI (HgCdTe) semiconductors can be engineered to have all the above properties nearly indistinguishable from those of graphene, while adding certain degree of versatility, such as ability to have not only 2-dimensional,...

  3. IWCN 2021: Computational Research of CMOS Channel Material Benchmarking for Future Technology Nodes: Missions, Learnings, and Remaining Challenges

    15 Jul 2021 | | Contributor(s):: raseong kim, Uygar Avci, Ian Alexander Young

    In this preentation, we review our journey of doing CMOS channel material benchmarking for future technology nodes. Through the comprehensive computational research for past several years, we have successfully projected the performance of various novel material CMOS based on rigorous physics...

  4. IWCN 2021: Interfacial Trap Effects in InAs Gate-all-around Nanowire Tunnel Field- Effect Transistors: First-Principles-Based Approach

    15 Jul 2021 | | Contributor(s):: Hyeongu Lee, SeongHyeok Jeon, Cho Yucheol, Mincheol Shin

    In this work, we investigated the effects of the traps, Arsenic dangling bond (AsDB) and Arsenic anti-site (AsIn) traps, in InAs gate-all-around nanowire TFETs, using the trap Hamiltonian obtained from the first-principles calculations. The transport properties were treated by nonequilibrium...

  5. Mode Space Tight Binding Model for Ultra-Fast Simulations of III-V Nanowire MOSFETs and Heterojunction TFETs

    13 Nov 2015 | | Contributor(s):: Aryan Afzalian, Jun Huang, Hesameddin Ilatikhameneh, Santiago Alonso Perez Rubiano, Tillmann Christoph Kubis, Michael Povolotskyi, Gerhard Klimeck

    IWCE 2015 presentation.  we explore here the suitability of a mode space tight binding algorithm to various iii-v homo- and heterojunction nanowire devices. we show that in iii-v materials, the number of unphysical modes to eliminate is very high compared to the si case previously reported...

  6. Moore’s Law Extension and Beyond

    19 Nov 2018 | | Contributor(s):: Peide "Peter" Ye

    In his talk, Ye will review his research efforts at Purdue on materials, structures and device architecture to support the microelectronic industry and extend Moore’s Law. The goal of the research is that it will lead to smarter, ubiquitous computing technology and keep us healthier,...

  7. Nanometer-Scale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs

    05 Oct 2015 | | Contributor(s):: Juses A. del Alamo

    This talk will review recent progress as well as challenges confronting III-V electronics for future logic applications with emphasis on the presenter’s research activities at MIT.

  8. Thermal Conductivity of III-V Semiconductor Superlattices

    25 Jan 2016 | | Contributor(s):: Song Mei, Zlatan Aksamija, Irena Knezevic

    IWCE 2015 presentation.  An InGaAs/InAlAs superlattice (SL) on an InP substrate is the mainstream material system for mid- IR quantum cascade lasers (QCL). The thermal conductivity tensor of SLs is critical for energy-efficient performance of QCLs; understanding the relative importance of...

  9. [Illinois] New directions in III-V MBE: from materials to devices

    13 Apr 2017 | | Contributor(s):: Minjoo Larry Lee

    9/8/2016 MNTL Industry Affiliates Program