Tags: molecular electronics

Description

In 1959, physicist Richard Feynman presented an amazing talk entitled There's Plenty of Room at the Bottom, in which he proposed making very small circuits out of molecules. More than forty years later, people are starting to realize his vision. Thanks to Scanning Tunneling Microscope (STM) probes and "self-assembly" fabrication techniques, it is now possible to connect electrodes to a molecule and measure its conductance. In 2004, Mark Hersam et al. reported the first experimental measurement of a molecular resonant tunneling device on silicon. This new field of Molecular Electronics may someday provide the means to miniaturize circuits beyond the limits of silicon, keeping Moore's Law in force for many years to come.

Learn more about molecular electronics from the resources on this site, listed below. More information on Molecular electronics can be found here.

Resources (81-100 of 144)

  1. Fundamentals of Nanoelectronics (Fall 2004)

    01 Sep 2004 | | Contributor(s):: Supriyo Datta, Behtash Behinaein

    Please Note: A newer version of this course is now available and we would greatly appreciate your feedback regarding the new format and contents. Welcome to the ECE 453 lectures. The development of "nanotechnology" has made it possible to engineer material and devices on a length...

  2. Huckel-IV on the nanoHub

    09 Jul 2003 | | Contributor(s):: Magnus Paulsson, Ferdows Zahid, Supriyo Datta

    Huckel-IV on the nanoHub

  3. Inelastic Effects in Molecular Conduction

    12 Apr 2004 | | Contributor(s):: Abraham Nitzan

    Molecular electron transfer, as treated by the Marcus theory, strongly depends on nuclear motion as a way to achieve critical configurations in which charge rearrangement is possible. The electron tunneling process itself is assumed to occur in a static nuclear environment. In the application of...

  4. IWCE 2004 Held at Purdue

    24 Oct 2004 |

    IEEE and NCN sponsored the 10th International Workshop of Computational Electronics at Purdue, October 24-27, with the theme "The field of Computational Electronics - Looking back and looking ahead."

  5. Logic Devices and Circuits on Carbon Nanotubes

    05 Apr 2006 | | Contributor(s):: Joerg Appenzeller

    Over the last years carbon nanotubes (CNs) have attracted an increasing interest as building blocks for nano-electronics applications. Due to their unique properties enabling e.g. ballistic transport at room-temperature over several hundred nanometers, high performance CN field-effect transistors...

  6. Macromolecular Simulation: A Computational Perspective

    16 Feb 2004 | | Contributor(s):: Robert D. Skeel

    The study of cold atomic gases is exploding, driven largely by the rapid experimental developments. This field has become highly interdisciplinary, connecting a great variety of interesting problems: weakly and strongly correlated quantum condensed matters, nuclear matters, and physics of low...

  7. Mark Ratner Interview on Nanotechnology

    23 Mar 2006 | | Contributor(s):: Mark Ratner, Krishna Madhavan

    Nanotechnology interview with Krishna Madhavan.

  8. MATLAB Scripts for "Quantum Transport: Atom to Transistor"

    15 Mar 2005 | | Contributor(s):: Supriyo Datta

    Tinker with quantum transport models! Download the MATLAB scripts used to demonstrate the physics described in Supriyo Datta's book Quantum Transport: Atom to Transistor. These simple models are less than a page of code, and yet they reproduce much of the fundamental physics observed in...

  9. MCW07 A Quantum Open Systems Approach to Molecular-Scale Devices

    25 Feb 2008 | | Contributor(s):: Yongqiang Xue

    Experimental advances in electrically and optically probing individual molecules have provided new insights into the behavior of single quantum objects and their interaction with the nanoenvironments without requiring ensemble average. Molecular-scale devices are open quantum systems whose...

  10. MCW07 Conductance Switching in Fluorene/TiO2 Molecular Heterojunctions

    13 Sep 2007 | | Contributor(s):: Richard L.McCreery

    Molecular junctions consisting of a monolayer of fluorene and 10 nm of TiO2 between conducting contacts exhibit a memory effect upon positive polarization of the of the TiO2 for a few milliseconds. The junction conductance increases for a period of several minutes, but can be “erased” by a...

  11. MCW07 Electronic Level Alignment at Metal-Molecule Contacts with a GW Approach

    05 Sep 2007 | | Contributor(s):: Jeffrey B. Neaton

    Most recent theoretical studies of electron transport in single-molecule junctions rely on a Landauer approach, simplified to treat electron-electron interactions at a mean-field level within density functional theory (DFT). While this framework has proven relatively accurate for certain systems,...

  12. MCW07 Exploring Trends in Conductance for Well-Defined Single Molecule Circuits

    04 Apr 2009 | | Contributor(s):: Mark S Hybertsen

    In our recent research, we have been able to measure and characterize the impact of intrinsic molecular properties on the conductance of single molecule circuits formed with amine-gold linkages. In this talk, I will review the experiments and the physical picture of the junction based on the...

  13. MCW07 Impact of Porphyrin Functional Groups on InAs Gas Sensors

    05 Nov 2007 | | Contributor(s):: Michael Garcia

    Porphyrin molecules are often used for sensor engineering to improve sensitivity and selectivity to specific analytes. It is important to understand how the porphyrin HOMO-LUMO levels deplete surface states during functionalization of solid state sensors. Additionally, the effect of...

  14. MCW07 Modeling Charging-based Switching in Molecular Transport Junctions

    23 Aug 2007 | | Contributor(s):: Sina Yeganeh, Misha Galperin, Mark Ratner

    We will discuss several proposed explanations for the switching and negative differential resistance behavior seen in some molecular junctions. It is shown that a proposed polaron model is successful in predicting both hysteresis and NDR behavior, and the model is elaborated with image charge...

  15. MCW07 Modeling Molecule-Assisted Transport in Nanotransistors

    06 Nov 2007 | | Contributor(s):: Kamil Walczak

    Molecular electronics faces many problems in practical device implementation, due to difficulties with fabrication and gate-ability. In these devices, molecules act as the main conducting channel. One could imagine alternate device structures where molecules act as quantum dots rather than...

  16. MCW07 Molecular Electronics and the Bottom-up View of Electronic Conduction

    12 Sep 2007 | | Contributor(s):: Supriyo Datta

    Molecular electronics is commonly associated with the bottom-up approach to nanofabrication. My objective in this talk is to point out how it also leads to a bottom-up view of electronic conduction completely different from the standard top-down approach that starts from large conductors and...

  17. MCW07 Physics of Contact Induced Current Asymmetry in Transport Through Molecules

    25 Feb 2008 | | Contributor(s):: Bhaskaran Muralidharan, owen miller, Neeti Kapur, Avik Ghosh, Supriyo Datta

    We first outline the qualitatively different physics involved in the charging-induced current asymmetries in molecular conductors operating in the strongly coupled (weakly interacting) self-consistent field (SCF) and the weakly coupled (strongly interacting) Coulomb Blockade (CB) regimes. The CB...

  18. MCW07 Silicon Based Nanopore Sensors for Detection of DNA Molecules

    11 Sep 2007 | | Contributor(s):: Samir Iqbal, Demir Akin, Rashid Bashir

    Solid-state nanopores have emerged as possible candidates for next-generation DNA sequencing devices. In this talk, we will review our recent work in development of solid-state nanopore channels that are selective towards single strand DNA (ssDNA). Nanopores functionalized with a 'probe' of...

  19. MCW07 Simple Models for Molecular Transport Junctions

    13 Sep 2007 | | Contributor(s):: Misha Galperin, Abraham Nitzan, Mark Ratner

    We review our recent research on role of interactions in molecular transport junctions. We consider simple models within nonequilibrium Green function approach (NEGF) in steady-state regime.

  20. Measurement of Single Molecule Conductance using STM-Based Break Junctions

    28 Jul 2005 | | Contributor(s):: Nongjian Tao

    We have measured single molecule conductance using a combined STM- and conducting AFM-based break junction method. The method works in aqueous solutions, which is suitable for biologically relevant molecules such as DNA and peptides, and also allows us to control electron transport through redox...