Tags: NEMS/MEMS

Description

The term Nanoelectromechanical systems or NEMS is used to describe devices integrating electrical and mechanical functionality on the nanoscale. NEMS typically integrate transistor-like nanoelectronics with mechanical actuators, pumps, or motors, and may thereby form physical, biological, and chemical sensors.

Microelectromechanical systems (MEMS) (also written as micro-electro-mechanical, MicroElectroMechanical or microelectronic and microelectromechanical systems) is the technology of very small mechanical devices driven by electricity; it merges at the nano-scale into nanoelectromechanical systems (NEMS) and nanotechnology.

MEMS are separate and distinct from the hypothetical vision of molecular nanotechnology or molecular electronics. MEMS are made up of components between 1 to 100 micrometres in size (i.e. 0.001 to 0.1 mm) and MEMS devices generally range in size from 20 micrometres (20 millionths of a metre) to a millimetre. They usually consist of a central unit that processes data, the microprocessor and several components that interact with the outside such as microsensors

Learn more about NEMS/MEMS from the many resources on this site, listed below. More information on NEMS/MEMS can be found here.

All Categories (101-120 of 334)

  1. Fazli Fatih Melemez

    https://nanohub.org/members/50299

  2. Ferroelectric BaTiO3 Nanowires: Synthesis, Properties, and Device Applications

    12 Feb 2008 | | Contributor(s):: Zhaoyu Wang

    One dimensional ferroelectric nanowires have attracted much attention due to its interests in fundamental physics and potential applications in Nanoelectromechanical Systems (NEMS), non-volatile ferroelectric memories, and sensors. Domain structure is the most important property of ferroelectric...

  3. Fine Tuning Microcantilever Vibrations for Ultrasensitive Analyte Mass Detection

    27 Jul 2005 | | Contributor(s):: Arvind Raman

    Microcantilever based biochemical sensing has shown tremendous promise for ultrasenstive detection in both liquid and ambient conditions. However improving the sensitivity, reliability and robustness of these sensors so they can achieve their potential needs substantial efforts in (a) chemical...

  4. First Principles-based Atomistic and Mesoscale Modeling of Materials

    01 Dec 2005 | | Contributor(s):: Alejandro Strachan

    This tutorial will describe some of the most powerful and widely used techniques for materials modeling including i) first principles quantum mechanics (QM), ii) large-scale molecular dynamics (MD) simulations and iii) mesoscale modeling, together with the strategies to bridge between them. These...

  5. First Principles-Based Modeling of materials: Towards Computational Materials Design

    20 Apr 2006 | | Contributor(s):: Alejandro Strachan

    Molecular dynamics (MD) simulations with accurate, first principles-based interatomic potentials is a powerful tool to uncover and characterize the molecular-level mechanisms that govern the chemical, mechanical and optical properties of materials. Such fundamental understanding is critical to...

  6. Fouling Mechanisms in Y-shaped Carbon Nanotubes

    04 Apr 2007 | | Contributor(s):: Jason Myers, SeongJun Heo, Susan Sinnott

    In the modern pharmaceutical and chemical industries, solutions of extremely high purity are needed. Current filtration methods are reaching the limits of their abilities, so new filters must be developed. One possible filter is a Y-shaped carbon nanotube (Y-tube). By changing the sizes of the...

  7. Gas Damping of Microcantilevers at Low Ambient Pressures

    03 Nov 2008 | | Contributor(s):: Rahul Anil Bidkar

    This seminar will present a theoretical model for predicting the gas damping of long, rectangular silicon microcantilevers, which are oscillating in an unbounded gaseous medium with the ambient pressures varying over 5 orders of magnitude (1000 > Kn > 0.03). The work is the result of a...

  8. Gated Chemical Transport through Vertically Aligned Carbon Nanotube Membranes

    08 Apr 2005 | | Contributor(s):: Bruce Hinds

    A promising architecture for ion-channel mimetics is a composite membrane structure containing vertically aligned carbon nanotubes, with inner core diameters of 7 nm, passing across a polystyrene matrix film. Plasma oxidation during the fabrication process introduces carboxylic acid groups on the...

  9. girish kh

    https://nanohub.org/members/228948

  10. Graphene Nanopore Drilling

    26 Feb 2018 | | Contributor(s):: Jae Hyun Park, Darren K Adams, Narayan Aluru

    Drilling a nanopore in graphene by Si-nanoparticle bombardment

  11. Hierarchical Physical Models for Analysis of Electrostatic Nanoelectromechanical Systems (NEMS)

    05 Jan 2006 | | Contributor(s):: Narayan Aluru

    This talk will introduce hierarchical physical models and efficient computational techniques for coupled analysis of electrical, mechanical and van der Waals energy domains encountered in Nanoelectromechanical Systems (NEMS). Numerical results will be presented for several silicon...

  12. High-Aspect-Ratio Micromachining of Titanium: Enabling New Functionality and Opportunity in Micromechanical Systems Through Greater Materials Selection

    09 Apr 2007 | | Contributor(s):: Masa Rao

    Traditionally, materials selection has been limited in high-aspect-ratio micromechanical applications, due primarily to the predominance of microfabrication processes and infrastructure dedicated to silicon. While silicon has proven to be an excellent material for many of these applications, no...

  13. High-Aspect-Ratio Micromachining of Titanium: Enabling New Functionality and Opportunity in Micromechanical Systems Through Greater Materials Selection

    18 Jun 2008 | | Contributor(s):: Masa Rao

    Traditionally, materials selection has been limited in high-aspect-ratio micromechanical applications, due primarily to the predominance of microfabrication processes and infrastructure dedicated to silicon. While silicon has proven to be an excellent material for many of these applications, no...

  14. Highly Efficient Thermal Transport: The Application of Carbon Nanotube Array Interfaces

    01 Feb 2007 | | Contributor(s):: Baratunde A. Cola

    Carbon nanotubes (CNTs) have received much attention in recent years for their extraordinary properties that through careful engineering may be leverage for the development of numerous advantageous applications. However, to date, only few CNT based applications exist in the market place. So when...

  15. HIMADRI PANDEY

    https://nanohub.org/members/58505

  16. hitesh kumar sahoo

    https://nanohub.org/members/36038

  17. hossain ghasemy

    i love simulation

    https://nanohub.org/members/199118

  18. Mar 28 2012

    How Can IntelliSuite v8.7 Benefit MEMS Research and Teaching

    Abstract - IntelliSuite was the first MEMS-specific CAD tool and has been under development for over 20 years. In this webinar, understand how this industrystandard software can help MEMS...

    https://nanohub.org/events/details/340

  19. Illinois BioNanotechnology Seminar Series Fall 2011: Deconvolving Stiffness in MEMS Pedestal Cell Mass Measurements

    03 Nov 2011 | | Contributor(s):: Elise Corbin

    The complex relationships between a cell's behavior and the physical properties of both itself and its environment have long been of interest. Specifically, the understanding the mechanisms through which a cell's physical properties influence cell growth, cell differentiation, cell cycle...

  20. May 06 2010

    Illinois CNST ANNUAL NANOTECHNOLOGY WORKSHOP 2010

    The broad objective of the Center for Nanoscale Science and Technology (CNST) workshop is to showcase University of Illinois research in bionanotechnology/ nanomedicine,...

    https://nanohub.org/events/details/268