Tags: quantum dots

Description

Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

Resources (101-114 of 114)

  1. Bandstructure in Nanoelectronics

    01 Nov 2005 | | Contributor(s):: Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material needs to be included in the device modeling. Atomistic bandstructure effects in resonant tunneling...

  2. Nanoparticle Synthesis and Assembly for Biological Sensing

    25 Oct 2005 | | Contributor(s):: Gil Lee

    Nanoparticles have unique physical and chemical properties that make them very useful for biological and chemical sensing. For example, colloidal gold has been used as an optical transducer for antibody based sensing for over twenty years and is the basis for a many of the point-of-use diagnostic...

  3. Semiconductor Interfaces at the Nanoscale

    17 Oct 2005 | | Contributor(s):: David Janes

    The trend in downscaling of electronic devices and the need to add functionalities such as sensing and nonvolatile memory to existing circuitry dictate that new approaches be developed for device structures and fabrication technologies. Various device technologies are being investigated,...

  4. Plasmonic Nanophotonics: Coupling Light to Nanostructure via Plasmons

    03 Oct 2005 | | Contributor(s):: Vladimir M. Shalaev

    The photon is the ultimate unit of information because it packages data in a signal of zero mass and has unmatched speed. The power of light is driving the photonicrevolution, and information technologies, which were formerly entirely electronic, are increasingly enlisting light to communicate...

  5. Quantum Dots

    21 Jul 2005 | | Contributor(s):: Gerhard Klimeck

    Quantum Dots are man-made artificial atoms that confine electrons to a small space. As such, they have atomic-like behavior and enable the study of quantum mechanical effects on a length scale that is around 100 times larger than the pure atomic scale. Quantum dots offer application...

  6. Parallel Computing for Realistic Nanoelectronic Simulations

    12 Sep 2005 | | Contributor(s):: Gerhard Klimeck

    Typical modeling and simulation efforts directed towards the understanding of electron transport at the nanometer scale utilize single workstations as computational engines. Growing understanding of the involved physics and the need to model realistically extended devices increases the complexity...

  7. Nanomaterials: Quantum Dots, Nanowires and Nanotubes

    15 Jul 2005 | | Contributor(s):: Timothy D. Sands

    What is a quantum dot? What is a nanowire? What is a nanotube? Why are these interesting and what are their potential applications? How are they made? This presentation is intended to begin to answer these questions while introducing some fundamental concepts such as wave-particle duality,...

  8. HPC and Visualization for multimillion atom simulations

    21 Jun 2005 | | Contributor(s):: Gerhard Klimeck

    This presentation gives an overview of the HPC and visulaization efforts involving multi-million atom simulations for the June 2005 NSF site visit to the Network for Computational Nanotechnology.

  9. 2005 Molecular Conduction and Sensors Workshop

    27 Jul 2005 |

    This is the 3rd in a series of annual workshops on Molecular Conduction. The prior workshops have been at Purdue University, W. Lafayette, IN (2003) and Nothwestern University, Evanston, IL (2004). The workshop has been an informal and open venue for discussing new results, key challenges, and...

  10. SEQUAL 2.1 Source Code Download

    09 Mar 2005 | | Contributor(s):: Michael McLennan

    SEQUAL 2.1 is a device simulation program that computes Semiconductor Electrostatics by Quantum Analysis. Given a device, SEQUAL will compute the electron density and the current density using a quantum mechanical, collisionless description of electron propagation. It was designed to be a...

  11. Single Electron Switching with Nano-Electromechanical Systems and Applications in Ion Channel Transport

    01 Nov 2004 | | Contributor(s):: Robert H. Blick

    Taking classes in physics always starts with Newtonian mechanics. In reducing the size of the objects considered however the transition into the quantum mechanical regime has to occur. The 'mechanics' of quantum mechanics is best studied in nano-structured semiconductor systems often termed...

  12. Visualization of and Educational Tool for Quantum Dots

    15 Aug 2004 | | Contributor(s):: Aaron Christensen, Adrian Rios

    Quantum dots (QDs) are confined structures made of metals and semiconductors that are capable of containing free electrons.The ability to visualize these small devices is advantageous in determining probable electron orbitals and in observing information not easily conceived in raw datasets.

  13. Control of Exchange Interaction in a Double Dot System

    05 Feb 2004 | | Contributor(s):: Mike Stopa

    As Rolf Landauer observed in 1960, information is physical. As a consequence, the transport and processing of information must obey the laws of physics. It therefore makes sense to base the laws of information processing and computation on the laws of physics and in particular on quantum...

  14. Quantum-dot Cellular Automata

    24 Nov 2003 | | Contributor(s):: Craig S. Lent

    The multiple challenges presented by the problem of scaling transistor sizes are all related to the fact that transistors encode binary information by the state of a current switch. What is required is a new paradigm, still capable of providing general purpose digital computation, but which can...