Tags: band structure

Description

In solid-state physics, the electronic band structure of a solid describes ranges of energy that an electron is "forbidden" or "allowed" to have. It is a function of the diffraction of the quantum mechanical electron waves in the periodic crystal lattice with a specific crystal system and Bravais lattice. The band structure of a material determines several characteristics, in particular its electronic and optical properties. More information on Band structure can be found here.

Resources (41-60 of 151)

  1. ECE 595E Lecture 21: 3D Bandstructures

    Online Presentations | 19 Mar 2013 | Contributor(s):: Peter Bermel

    Outline:Recap from MondayBandstructure Symmetries2D Photonic BandstructuresPeriodic Dielectric WaveguidesPhotonic Crystal Slabs

  2. ECE 595E Lecture 24: Electronic Bandstructure Simulation Tools

    Online Presentations | 19 Mar 2013 | Contributor(s):: Peter Bermel

    Outline:Electronic bandstructure labBasic PrinciplesInput InterfaceExemplary OutputsDensity functional theory (DFT)DFT in Quantum ESPRESSO 

  3. ECE 595E Lecture 22: Full 3D Bandgaps

    Online Presentations | 06 Mar 2013 | Contributor(s):: Peter Bermel

    Outline:Recap from Wednesday3D Lattice TypesFull 3D Photonic Bandgap StructuresYablonoviteWoodpileInverse OpalsRod-Hole 3D PhCs

  4. ECE 595E Lecture 20: Bandstructure Concepts

    Online Presentations | 06 Mar 2013 | Contributor(s):: Peter Bermel

    Outline:Recap from FridayBandstructure Problem FormulationBloch’s TheoremReciprocal Lattice SpaceNumerical Solutions1D crystal2D triangular lattice3D diamond lattice

  5. ECE 606 Lecture 3: Emergence of Bandstructure

    Online Presentations | 31 Aug 2012 | Contributor(s):: Gerhard Klimeck

    Table of Contents:00:00 ECE606: Solid State Devices Lecture 300:24 Motivation01:17 Time-independent Schrodinger Equation02:22 Time-independent Schrodinger Equation04:23 A Simple Differential Equation05:29 Presentation Outline05:46 Full Problem Difficult: Toy Problems First06:07 Case 1: Solution...

  6. NEMO5 Overview Presentation

    Online Presentations | 17 Jul 2012 | Contributor(s):: Tillmann Christoph Kubis, Michael Povolotskyi, Jean Michel D Sellier, James Fonseca, Gerhard Klimeck

    This presentation gives an overview of the current functionality of NEMO5.

  7. ECE 656 Lecture 3: Density of States

    Online Presentations | 07 Sep 2011 | Contributor(s):: Mark Lundstrom

    Outline:Density of statesExample: grapheneDiscussionSummary

  8. ECE 656 Lecture 2: Sums in k-Space/Integrals in Energy Space

    Online Presentations | 07 Sep 2011 | Contributor(s):: Mark Lundstrom

    Outline:Density of states in k-spaceExampleWorking in energy spaceDiscussionSummary

  9. ACUTE - Bandstructure Assignment

    Teaching Materials | 07 Jul 2011 | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This is assignment that is part of the ACUTE tool-based curricula that guides the students step by step how to implement an empirical pseudopotential method for the bandstructure calculation.

  10. Additional Tutorials on Selected Topics in Nanotechnology

    Workshops | 29 Mar 2011 | Contributor(s):: Gerhard Klimeck, Umesh V. Waghmare, Timothy S Fisher, N. S. Vidhyadhiraja

    Select tutorials in nanotechnology, a part of the 2010 NCN@Purdue Summer School: Electronics from the Bottom Up.

  11. Tutorial 4: Far-From-Equilibrium Quantum Transport

    Courses | 29 Mar 2011 | Contributor(s):: Gerhard Klimeck

    These lectures focus on the application of the theories using the nanoelectronic modeling tools NEMO 1- D, NEMO 3-D, and OMEN to realistically extended devices. Topics to be covered are realistic resonant tunneling diodes, quantum dots, nanowires, and Ultra-Thin-Body Transistors.

  12. Tutorial 4a: High Bias Quantum Transport in Resonant Tunneling Diodes

    Online Presentations | 29 Mar 2011 | Contributor(s):: Gerhard Klimeck

    Outline:Resonant Tunneling Diodes - NEMO1D: Motivation / History / Key InsightsOpen 1D Systems: Transmission through Double Barrier Structures - Resonant TunnelingIntroduction to RTDs: Linear Potential DropIntroduction to RTDs: Realistic Doping ProfilesIntroduction to RTDs: Relaxation Scattering...

  13. Tutorial 4b: Introduction to the NEMO3D Tool - Electronic Structure and Transport in 3D

    Online Presentations | 29 Mar 2011 | Contributor(s):: Gerhard Klimeck

    Electronic Structure and Transport in 3D - Quantum Dots, Nanowires and Ultra-Thin Body Transistors

  14. Tutorial 4c: Formation of Bandstructure in Finite Superlattices (Exercise Session)

    Online Presentations | 29 Mar 2011 | Contributor(s):: Gerhard Klimeck

    How does bandstructure occur? How large does a repeated system have to be? How does a finite superlattice compare to an infinite superlattice?

  15. Tutorial 4d: Formation of Bandstructure in Finite Superlattices (Exercise Demo)

    Online Presentations | 29 Mar 2011 | Contributor(s):: Gerhard Klimeck

    Demonstration of thePiece-Wise Constant Potential Barriers Tool.

  16. Berkeley GW

    Tools | 27 Sep 2009 | Contributor(s):: Alexander S McLeod, Peter Doak, Sahar Sharifzadeh, Jeffrey B. Neaton

    This is an educational tool that illustrates the calculation of the electronic structure of materials using many-body perturbation theory within the GW approximation

  17. 2010 NCN@Purdue Summer School: Electronics from the Bottom Up

    Workshops | 20 Apr 2010

    Electronics from the Bottom Up seeks to bring a new perspective to electronic devices – one that is designed to help realize the opportunities that nanotechnology presents.

  18. Coupled Effect of Strain and Magnetic Field on Electronic Bandstructure of Graphene

    Papers | 03 Dec 2010 | Contributor(s):: yashudeep singh

    We explore the possibility of coupling between planar strain and perpendicular magnetic field on electronic bandstructure of graphene. We study uni-axially, bi-axially and shear strained graphene under magnetic field. In line with Rammal’s formalism using nearest neighbor tight binding scheme we...

  19. ABACUS: Test for Bandstructure Lab

    Teaching Materials | 09 Aug 2010 | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This is a test that examines ones understanding of electronic structure once he/she has gone through the materials and exercises provided on the nanoHUB as part of the ABACUS Bandstructure topic page and running the Bandstructure Lab.

  20. Nanoelectronic Modeling Lecture 41: Full-Band and Atomistic Simulation of Realistic 40nm InAs HEMT

    Online Presentations | 08 Jul 2010 | Contributor(s):: Gerhard Klimeck, Neerav Kharche, Neophytos Neophytou, Mathieu Luisier

    This presentation demonstrates the OMEN capabilities to perform a multi-scale simulation of advanced InAs-based high mobility transistors.Learning Objectives:Quantum Transport Simulator Full-Band and Atomistic III-V HEMTs Performance Analysis Good Agreement with Experiment Some Open Issues...