Tags: nanotransistors

Description

 

A nanotransistor is a transistor whose dimensions are measured in nanometers. Transistors are used for switching and amplifying electronic signals. When combined in the millions and billions, they can be used to create sophisticated programmable information processors.

 

Online Presentations (321-335 of 335)

  1. On the Reliability of Micro-Electronic Devices: An Introductory Lecture on Negative Bias Temperature Instability

    Online Presentations | 28 Sep 2005 | Contributor(s):: Muhammad A. Alam

    In 1930s Bell Labs scientists chose to focus on Siand Ge, rather than better known semiconductors like Ag2S and Cu2S, mostly because of their reliable performance. Their choice was rewarded with the invention of bipolar transistors several years later. In 1960s, scientists at Fairchild worked...

  2. Modeling and Simulation of Sub-Micron Thermal Transport

    Online Presentations | 26 Sep 2005 | Contributor(s):: Jayathi Murthy

    In recent years, there has been increasing interest in understanding thermal phenomena at the sub-micron scale. Applications include the thermal performance of microelectronic devices, thermo-electric energy conversion, ultra-fast laser machining and many others. It is now accepted that Fourier's...

  3. Moore's Law Forever?

    Online Presentations | 13 Jul 2005 | Contributor(s):: Mark Lundstrom

    This talk covers the big technological changes in the 20th and 21st century that were correctly predicted by Gordon Moore in 1965. Moore's Law states that the number of transistors on a silicon chip doubles every technology generation. In 1960s terms that meant every 12 months and currently...

  4. Nanoelectronics: The New Frontier?

    Online Presentations | 18 Apr 2005 | Contributor(s):: Mark Lundstrom

    After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths of only 50 nm, and billion transistor logic chips have arrived. Moore’s Law continues, but the end of MOSFET scaling is...

  5. CMOS Nanotechnology

    Online Presentations | 07 Jul 2004 | Contributor(s):: Mark Lundstrom

    In non-specialist language, this talk introduces CMOS technology used for modern electronics. Beginning with an explanation of "CMOS," the speaker relates basic system considerations of transistor design and identifies future challenges for CMOS electronics. Anyone with an elementary...

  6. Transistors

    Online Presentations | 04 Aug 2004 | Contributor(s):: Mark Lundstrom

    The transistor is the basic element of electronic systems. The integrated circuits inside today's personal computers, cell phones, PDA's, etc., contain hundreds of millions of transistors on a chip of silicon about 2 cm on a side. Each technology generation, engineers shrink the size of...

  7. Self-Heating and Scaling of Silicon Nano-Transistors

    Online Presentations | 05 Aug 2004 | Contributor(s):: Eric Pop

    The most often cited technological roadblock of nanoscale electronics is the "power problem," i.e. power densities and device temperatures reaching levels that will prevent their reliable operation. Technology roadmap (ITRS) requirements are expected to lead to more heat dissipation problems,...

  8. Exponential Challenges, Exponential Rewards - The Future of Moore's Law

    Online Presentations | 14 Dec 2004 | Contributor(s):: Shekhar Borkar

    Three exponentials have been the foundation of today's electronics, which are often taken for granted—namely transistor density, performance, and energy. Moore's Law captures the impact of these exponentials. Exponentially increasing transistor integration capacity, and...

  9. Electronic Transport in Semiconductors (Introductory Lecture)

    Online Presentations | 25 Aug 2004 | Contributor(s):: Mark Lundstrom

    Welcome to the ECE 656 Introductory lecture. The objective of the course is to develop a clear, physical understanding of charge carrier transport in bulk semiconductors and in small semiconductor devices.The emphasis is on transport physics and its consequences in a device context. The course...

  10. Faster Materials versus Nanoscaled Si and SiGe: A Fork in the Roadmap?

    Online Presentations | 20 Apr 2004 | Contributor(s):: Jerry M. Woodall

    Strained Si and SiGe MOSFET technologies face fundamental limits towards the end of this decade when the technology roadmap calls for gate dimensions of 45 nm headed for 22 nm. This fact, and difficulties in developing a suitable high-K dielectric, have stimulated the search for alternatives to...

  11. Digital Electronics: Fundamental Limits and Future Prospects

    Online Presentations | 20 Jan 2004 | Contributor(s):: Konstantin K. Likharev

    I will review some old and some recent work on the fundamental (and not so fundamental) limits imposed by physics of electron devices on their density and power consumption.

  12. A Personal Quest for Information

    Online Presentations | 19 Feb 2004 | Contributor(s):: Vwani P. Roychowdhury

    This talk will report results and conclusions from my personal investigations into several different disciplines, carried out with the unifying intent of uncovering some of the fundamental principles that govern representation, processing, and the communication of information. The specific...

  13. Nanoelectronics and the Future of Microelectronics

    Online Presentations | 22 Aug 2002 | Contributor(s):: Mark Lundstrom

    Progress in silicon technology continues to outpace the historic pace of Moore's Law, but the end of device scaling now seems to be only 10-15 years away. As a result, there is intense interest in new, molecular-scale devices that might complement a basic silicon platform by providing it...

  14. Quantum-dot Cellular Automata

    Online Presentations | 24 Nov 2003 | Contributor(s):: Craig S. Lent

    The multiple challenges presented by the problem of scaling transistor sizes are all related to the fact that transistors encode binary information by the state of a current switch. What is required is a new paradigm, still capable of providing general purpose digital computation, but which can...

  15. Electronic Transport in Semi-conducting Carbon Nanotube Transistor Devices

    Online Presentations | 16 Oct 2003 | Contributor(s):: Joerg Appenzeller

    Recent demonstrations of high performance carbon nanotube field-effect transistors (CNFETs) highlight their potential for a future nanotube-based electronics. Besides being just a nanometer in diameter, carbon nanotubes offer intrinsic advantages if compared with silicon that are responsible for...