Tags: nanowires

Description

A nanowire is a nanostructure, with the diameter of the order of a nanometer. Alternatively, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length. At these scales, quantum mechanical effects are important.

Learn more about quantum dots from the many resources on this site, listed below. More information on Nanowires can be found here.

Online Presentations (1-20 of 69)

  1. Micromagnetic Simulation of Magnetic Nanowires (MNW) using OOMMF to Predict Heating Ability

    11 Jan 2023 | | Contributor(s):: Yicong Chen

    Using the OOMMF simulation tool in nanoHUB, we will learn how to specify properties of the MNWs, such as their geometry and material and how these properties will affect their magnetic reversal behavior. For instance, we will use the graph function in OOMMF to observe the changes of hysteresis...

  2. Alternative Hitachi SEM Techniques

    17 May 2022 |

    Robert Passeri, Hitachi engineer, discusses STEM and low kV imaging techniques with the Hitachi SEM S4800.

  3. Chemical Vapor Deposition 2 Modes, 1D, 2D

    07 Jan 2022 | | Contributor(s):: Terry Kuzma, NACK Network

    The foundations of Chemical Vapor Deposition (CVD) will be reviewed, with a focus on Low Pressure CVD (LPCVD), typical deposition system design, and the two modes of deposition.

  4. IWCN 2021: Interfacial Trap Effects in InAs Gate-all-around Nanowire Tunnel Field- Effect Transistors: First-Principles-Based Approach

    15 Jul 2021 | | Contributor(s):: Hyeongu Lee, SeongHyeok Jeon, Cho Yucheol, Mincheol Shin

    In this work, we investigated the effects of the traps, Arsenic dangling bond (AsDB) and Arsenic anti-site (AsIn) traps, in InAs gate-all-around nanowire TFETs, using the trap Hamiltonian obtained from the first-principles calculations. The transport properties were treated by nonequilibrium...

  5. IWCN 2021: Multiscale Modeling and Simulation of Advanced Photovoltaic Devices

    14 Jul 2021 | | Contributor(s):: Yongjie Zou, Reza Vatan Meidanshahi, Raghuraj Hathwar, Stephen M. Goodnick

    The introduction of new materials, device concepts and nanotechnology-based solutions to achieve high efficiency and low cost in photovoltaic (PV) devices requires modeling and simulation well beyond the current state of the art. New materials and heterojunction interfaces require atomistic...

  6. FDNS21: Predictive Models in Materials Making, 2D, 3D, 2.1D

    27 Apr 2021 | | Contributor(s):: Boris I Yakobson

  7. FDNS21: Conversion of Metal Oxide Films to 2D Metal Chalcogenide Films

    27 Apr 2021 | | Contributor(s):: Judy Cha

  8. Josephson Detection of Multiband Effects in Superconductors

    07 Sep 2020 | | Contributor(s):: James Williams

    In this talk focus be given to the modification of conventional Josephson effects due to the loss of time reversal symmetry found to exist in proximity-induced Josephson junction of SnTe nanowires.

  9. 3 min Research Talk: Plasmonic Core-Multishell Nanowires for Optical Applications

    26 Sep 2019 | | Contributor(s):: Raheem Carless

    ED lights and technology are being used more often in today’s society. Compared to traditional illumination they are far more reliable and efficient, in the sense that they last longer, are environmentally friendly, and most importantly, they reduce energy waste.

  10. Bandstructure Effects in Nano Devices With NEMO: from Basic Physics to Real Devices and to Global Impact on nanoHUB.org

    08 Mar 2019 | | Contributor(s):: Gerhard Klimeck

    This presentation will intuitively describe how bandstructure is modified at the nanometer scale and what some of the consequences are on the device performance.

  11. Semiconducting Halide Perovskite Nanomaterials and Heterojunctions

    10 May 2018 | | Contributor(s):: Letian Dou

    Firstly, we present new synthetic methodology of halide perovskite nanowires with desired size, composition, and properties. Such synthetic approach includes colloidal, solution-phase, and vapor-phase growth. Sub-micrometer single crystal nanowires from solution-phase growth were demonstrated...

  12. Quantum Coherent Transport in Atoms & Electrons

    21 Jun 2017 | | Contributor(s):: Yong P. Chen

    I will discuss some recent experimental examples from my lab studying quantum coherent transport and interferometry in electrons as well as cold atoms.   For example, phase coherent electron transport and interference around a cylinder realized in a nanowire of topological insulator...

  13. Building a Topological Quantum Computer 101

    20 Jun 2017 | | Contributor(s):: Michael Freedman

    Michael Freeman shares his perspective on how we should approach building a quantum computer, starting with the mathematical roots and moving through the physics to concrete engineering and materials growth challenges on which success will hinge. He will then discuss a new, enhanced,...

  14. Piezo Nanomaterials and Green Energy

    19 Oct 2016 | | Contributor(s):: Rusen Yang

    This presentation will introduce the fundamental principle of nanogenerator and its potential applications.

  15. Modeling Quantum Acceleration (Multi-Band Drift) of Bloch Waves in Nanowires

    24 Mar 2016 | | Contributor(s):: Raghuraj Hathwar, marco saraniti, Stephen M. Goodnick

    IWCE 2015 presentation.  Abstract and more information to be added at a later date.

  16. E304 L4.2.2: Nanomaterials - Nanostrucutes (dots, wires)

    18 Mar 2016 | | Contributor(s):: ASSIST ERC

  17. Magnetic Nanowires: Revolutionizing Hard Drives, Random Access Memory, & Cancer Treatment

    18 Feb 2016 | | Contributor(s):: Beth Stadler

    This talk will reveal synthesis secrets for nm-control of layer thicknesses, even for difficult alloys, which has enabled studies of magnetization reversal, magneto-elasticity, giant magnetoresistance, and spin transfer torqueswitching. These nanowires will mitigate the ITRS Roadmap’s...

  18. Photonic Quantum Computation & Quantum Simulation

    11 Feb 2016 | | Contributor(s):: Philip Walther

    The advantages of the photons makes optical quantum system ideally suited for fundamental quantum physics experiments and a variety of applications in quantum information processing. Here I will briefly review privacy-preserving photonic quantum cloud computing, where quantum information is...

  19. Anisotropic Schrödinger Equation Quantum Corrections for 3D Monte Carlo Simulations of Nanoscale Multigate Transistors

    05 Jan 2016 | | Contributor(s):: Karol Kalna, Muhammad Ali A. Elmessary, Daniel Nagy, Manuel Aldegunde

    IWCE 2015 presentation. We incorporated anisotropic 2D Schrodinger equation based quantum corrections (SEQC) that depends on valley orientation into a 3D Finite Element (FE) Monte Carlo (MC) simulation toolbox. The MC toolbox was tested against experimental ID-VG characteristics of the 22 nm gate...

  20. Phonon Interactions in Single-Dopant-Based Transistors: Temperature and Size Dependence

    25 Nov 2015 | | Contributor(s):: Marc Bescond, Nicolas Cavassilas, Salim Berrada

    IWCE 2015 presentation. in this work we investigate the dependence of electron-phonon scattering in single dopant-based nanowire transistor with respect to temperature and dimensions. we use a 3d real-space non-equilibrium green': ; s function (negf) approach where electron-phonon...