Tags: tunneling

Resources (1-20 of 65)

  1. A Signed Particle Formulation of Non-Relativistic Quantum Mechanics

    03 Jun 2015 | Contributor(s):: Jean Michel D Sellier

    A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a...

  2. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    16 Jul 2008 | | Contributor(s):: Xufeng Wang, Daniel Mejia, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor devices

  3. Additional Tutorials on Selected Topics in Nanotechnology

    23 Mar 2011 | | Contributor(s):: Gerhard Klimeck, Umesh V. Waghmare, Timothy S Fisher, N. S. Vidhyadhiraja

    Select tutorials in nanotechnology, a part of the 2010 NCN@Purdue Summer School: Electronics from the Bottom Up.

  4. Application of the Keldysh Formalism to Quantum Device Modeling and Analysis

    14 Jan 2008 | | Contributor(s):: Roger Lake

    The effect of inelastic scattering on quantum electron transport through layered semi-conductor structures is studied numerically using the approach based on the non-equilibrium Green's function formalism of Keldysh, Kadanoff, and Baym. The Markov assumption is not made, and the energy coordinate...

  5. AQME - Advancing Quantum Mechanics for Engineers

    12 Aug 2008 | | Contributor(s):: Gerhard Klimeck, Xufeng Wang, Dragica Vasileska

    One-stop-shop for teaching quantum mechanics for engineers

  6. Assembly for Nanotechnology Survey Courses

    05 Nov 2008 | | Contributor(s):: Gerhard Klimeck, Dragica Vasileska

    Educational Tools for Classroom and Homework use to introduce nanotechnology concepts

  7. Atomistic Modeling and Simulation Tools for Nanoelectronics and their Deployment on nanoHUB.org

    16 Dec 2010 | | Contributor(s):: Gerhard Klimeck

    At the nanometer scale the concepts of device and material meet and a new device is a new material and vice versa. While atomistic device representations are novel to device physicists, the semiconductor materials modeling community usually treats infinitely periodic structures. Two electronic...

  8. Atomistic Modeling of Nano Devices: From Qubits to Transistors

    12 Apr 2016 | | Contributor(s):: Rajib Rahman

    In this talk, I will describe such a framework that can capture complex interactions ranging from exchange and spin-orbit-valley coupling in spin qubits to non-equilibrium charge transport in tunneling transistors. I will show how atomistic full configuration interaction calculations of exchange...

  9. Auger Generation as an Intrinsic Limit to Tunneling Field-Effect Transistor Performance

    21 Sep 2016 | | Contributor(s):: Jamie Teherani

    Many in the microelectronics field view tunneling field-effect transistors (TFETs) as society’s best hope for achieving a > 10× power reduction for electronic devices; however, despite a decade of considerable worldwide research, experimental TFET results have significantly...

  10. Bandstructure Effects in Nano Devices With NEMO: from Basic Physics to Real Devices and to Global Impact on nanoHUB.org

    08 Mar 2019 | | Contributor(s):: Gerhard Klimeck

    This presentation will intuitively describe how bandstructure is modified at the nanometer scale and what some of the consequences are on the device performance.

  11. Computational Nanoscience, Lecture 26: Life Beyond DFT -- Computational Methods for Electron Correlations, Excitations, and Tunneling Transport

    16 May 2008 | | Contributor(s):: Jeffrey B. Neaton

    In this lecture, we provide a brief introduction to "beyond DFT" methods for studying excited state properties, optical properties, and transport properties. We discuss how the GW approximation to the self-energy corrects the quasiparticle excitations energies predicted by Kohn-Sham DFT. For...

  12. E304 L6.2.2: Nanoelectrics - Tunneling

    15 Apr 2016 | | Contributor(s):: ASSIST ERC

  13. ECE 606 L6.1: Electron Tunneling - Transfer Matrix Method

    28 Apr 2023 | | Contributor(s):: Gerhard Klimeck

  14. ECE 606 L6.2: Electron Tunneling - Tunneling Through a Single Barrier

    28 Apr 2023 | | Contributor(s):: Gerhard Klimeck

  15. ECE 606 L6.3: Electron Tunneling - Tunneling Through a Double Barrier Structure

    28 Apr 2023 | | Contributor(s):: Gerhard Klimeck

  16. ECE 606 L6.4: Electron Tunneling - Tunneling Through N Barriers - Formation of Bandstructure

    28 Apr 2023 | | Contributor(s):: Gerhard Klimeck

  17. ECE 606 L6.5: Electron Tunneling - Analytical and Numerical Solution Strategies

    28 Apr 2023 | | Contributor(s):: Gerhard Klimeck

  18. Electron Transport in Schottky Barrier CNTFETs

    24 Oct 2017 | | Contributor(s):: Igor Bejenari

    This resource has been removed at the request of the author.A given review describes models based on Wentzel-Kramers-Brillouin approximation, which are used to obtain I-V characteristics for ballistic CNTFETs with Schottky-Barrier (SB) contacts. The SB is supposed to be an exponentially...

  19. Electron-Phonon and Electron-Electron Interactions in Quantum Transport

    14 Jan 2008 | | Contributor(s):: Gerhard Klimeck

    The objective of this work is to shed light on electron transport through sub-micron semi-conductor structures, where electronic state quantization, electron-electron interactions and electron-phonon interactions are important. We concentrate here on the most developed vertical quantum device,...

  20. Energies and Lifetimes with Complex-Scaling

    02 Apr 2012 | | Contributor(s):: Daniel Lee Whitenack, Adam Wasserman

    Calculate the resonance energies and lifetimes of a user-defined potential with a uniform complex-scaling transformation.