Tags: phonons

Description

In physics, a phonon is a quasiparticle characterized by the quantization of the modes of lattice vibrations of periodic, elastic crystal structures of solids. The study of phonons is an important part of solid state physics because phonons play a major role in many of the physical properties of solids, including a material's thermal and electrical conductivities.

Learn more about quantum dots from the many resources on this site, listed below. More information on Phonons can be found here.

Resources (21-40 of 49)

  1. IMA 2013 UQ: DFT-based Thermal Properties: Three Levels of Error Management

    02 Apr 2014 | | Contributor(s):: Kurt Lejaeghere

    It is often computationally expensive to predict finite-temperature properties of a crystal from density-functional theory (DFT). The temperature-dependent thermal expansion coefficient α, for example, is calculated from the phonon spectrum, and the melting temperature Tm can only be obtained...

  2. PHYS 620 Lecture 8: Phonons

    12 Apr 2013 | | Contributor(s):: Roberto Merlin

  3. Two-temperature Non-equilibrium Molecular Dynamics Simulator

    26 Jul 2012 | | Contributor(s):: Yan Wang, Xin Jin, Xiulin Ruan

    Simulate electron-phonon coupled thermal transport across metal-nonmetal interface

  4. ECE 656 Lecture 26: Phonon Scattering III

    07 Nov 2011 | | Contributor(s):: Mark Lundstrom

    Outline:ReviewExamplePOP and IV scatteringScattering in common semiconductorsElectron-electron scatteringSummary

  5. ECE 656 Lecture 25: Phonon Scattering II

    07 Nov 2011 | | Contributor(s):: Mark Lundstrom

    Outline:Reviewphononselectron-phonon couplingEnergy-momentum conservationMathematical formulationExampleSummary

  6. ECE 656 Lecture 24: Phonon Scattering I

    07 Nov 2011 | | Contributor(s):: Mark Lundstrom

    This lecture should be viewed in the 2009 teaching ECE 656 Lecture 23: Phonon Scattering I

  7. 1-D Chain Dispersions

    01 Sep 2011 | | Contributor(s):: Nicholas Roberts, Greg Walker

    1-D Chain of atoms, bases and layers to produce phonon dispersion

  8. Thermal Transport Across Interfaces

    19 Aug 2011 | | Contributor(s):: Timothy S Fisher

    These lectures provide a theoretical development of the transport of thermal energy by conduction in nanomaterials, in which material interfaces typically dominate transport. The physical nature of energy transport by two carriers: electrons and phonons--will be explored.

  9. Lecture 9: Introduction to Phonon Transport

    17 Aug 2011 | | Contributor(s):: Mark Lundstrom

    This lecture is an introduction to phonon transport. Key similarities and differences between electron and phonon transport are discussed.

  10. Tutorial 2: Thermal Transport Across Interfaces - Electrons

    15 Aug 2011 | | Contributor(s):: Timothy S Fisher

    Outline:Thermal boundary resistanceElectronic transportReal interfaces and measurementsCarbon nanotube interfaces

  11. Tutorial 1: Thermal Transport Across Interfaces - Phonons

    30 Jul 2011 | | Contributor(s):: Timothy S Fisher

    Outline:Lattice vibrations and phononsThe vibrating stringInterfaces between dissimilar strings: acousticmismatchDiscrete masses and the vibrational eigenspectrumGeneral thermal transport theory

  12. Phonon Vibrations

    10 Jul 2011 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    Vibrations of the crystalline lattice are explained on the examples of monoatomic and diatomic lattice.

  13. Phonon Thermal Properties

    10 Jul 2011 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    Phonon Thermal Properties are discussed in this set of slides.

  14. Tutorial 2: A Bottom-Up View of Heat Transfer in Nanomaterials

    23 Mar 2011 | | Contributor(s):: Timothy S Fisher

    This lecture provides a theoretical development of the transport of thermal energy by conduction in nanomaterials. The physical nature of energy transport by two carriers—electrons and phonons--will be explored from basic principles using a common Landauer framework. Issues including the quantum...

  15. Limits of Thermal Processes and their Implications on Efficient Energy Utilization

    19 Oct 2010 | | Contributor(s):: Arunava Majumdar

    About 90 percent of the world’s energy use involves thermal processes – thermal engines to generate mechanical power; heating and cooling in buildings; heating involved in manufacturing of steel, cement, glass, petrochemicals etc. To identify opportunities for improving current...

  16. Thermoelectric effects in semiconductor nanostructures: Role of electron and lattice properties

    29 Sep 2010 | | Contributor(s):: Abhijeet Paul, Gerhard Klimeck

    This presentation covers some aspects of present development in the field of thermoelectricity and focuses particularly on the silicon nanowires as potential thermoelectric materials. The electronic and phonon dispersions are calculated and used for the calculation of thermoelectric properties in...

  17. Tutorial 3a: Materials Simulation by First-Principles Density Functional Theory I

    09 Sep 2010 | | Contributor(s):: Umesh V. Waghmare

    This lecture provides an introduction to first-principles density functional theory based methods for simulation of materials, with a focus on determination of interatomic force constants and vibrational spectra of nano-structures and extended periodic materials.Outline:Phonons, soft...

  18. DFT calculations with Quantum ESPRESSO

    07 Jul 2010 | | Contributor(s):: Janam Jhaveri, Ravi Pramod Kumar Vedula, Alejandro Strachan, Benjamin P Haley

    DFT calculations of molecules and solids

  19. Ripples and Warping of Graphene: A Theoretical Study

    19 May 2010 | | Contributor(s):: Umesh V. Waghmare

    We use first-principles density functional theory based analysis to understand formation of ripples in graphene and related 2-D materials. For an infinite graphene, we show that ripples are linked with a low energy branch of phonons that exhibits quadratic dispersion at long wave-lengths. Many...

  20. CNT Mobility

    26 Apr 2009 | | Contributor(s):: Yang Zhao, Albert Liao, Eric Pop

    Simulate field effect carrier mobility in back-gated CNTFET devices at low field