Tags: quantum mechanics

Description

Quantum mechanics (QM), also known as quantum physics or quantum theory, is a branch of physics providing a mathematical description of much of the dual particle-like and wave-like behavior and interactions of energy and matter. It departs from classical mechanics primarily at the atomic and subatomic scales, the so-called quantum realm. In advanced topics of QM, some of these behaviors are macroscopic and only emerge at very low or very high energies or temperatures.

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum mechanics can be found here.

All Categories (121-140 of 149)

  1. Theoretical Electron Density Visualizer

    Tools | 01 Jul 2008 | Contributor(s):: Baudilio Tejerina

    TEDVis calculates and displays 3D maps of molecular ED and its derivatives from the wave function.

  2. Quantum-Mechanical Reflections in Nanodevices: an Exercise

    Teaching Materials | 02 Jul 2008 | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This exercise points out to the fact that quantum-mechanical reflections are going to be significant in nanoscale devices and proper modeling of these device structures must take into consideration the quantum-mechanical reflections. NSF, ONR Dragica Vasileska personal web-site...

  3. Quantum-Mechanical Reflections: an Exercise

    Teaching Materials | 30 Jun 2008 | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

  4. Md. Arafat Hossain Khan

    https://nanohub.org/members/29334

  5. Dynamics of Quantum Fluids: Path integral and Semiclassical Methods

    Online Presentations | 21 May 2008 | Contributor(s):: Nancy Makri

    The interplay of many-body nonlinear interactions and quantum mechanical effects such as zero-point motion or identical particle exchange symmetries lead to intriguing phenomena in low-temperature fluids, some of which remain poorly understood. Recent advances in theory and methodology have...

  6. Computational Nanoscience, Lecture 20: Quantum Monte Carlo, part I

    Teaching Materials | 15 May 2008 | Contributor(s):: Elif Ertekin, Jeffrey C Grossman

    This lecture provides and introduction to Quantum Monte Carlo methods. We review the concept of electron correlation and introduce Variational Monte Carlo methods as an approach to going beyond the mean field approximation. We describe briefly the Slater-Jastrow expansion of the wavefunction, and...

  7. Computational Nanoscience, Lecture 21: Quantum Monte Carlo, part II

    Teaching Materials | 15 May 2008 | Contributor(s):: Jeffrey C Grossman, Elif Ertekin

    This is our second lecture in a series on Quantum Monte Carlo methods. We describe the Diffusion Monte Carlo approach here, in which the approximation to the solution is not restricted by choice of a functional form for the wavefunction. The DMC approach is explained, and the fixed node...

  8. Computational Nanoscience, Lecture 13: Introduction to Computational Quantum Mechanics

    Teaching Materials | 30 Apr 2008 | Contributor(s):: Jeffrey C Grossman, Elif Ertekin

    In this lecture we introduce the basic concepts that will be needed as we explore simulation approaches that describe the electronic structure of a system.

  9. UV/Vis Spectra simulator

    Tools | 04 Mar 2008 | Contributor(s):: Baudilio Tejerina

    This tool computes molecular electronic spectra.

  10. Introduction to Coulomb Blockade Lab

    Teaching Materials | 31 Mar 2008 | Contributor(s):: Bhaskaran Muralidharan, Xufeng Wang, Gerhard Klimeck

    The tutorial is based on the Coulomb Blockade Lab available online at Coulomb Blockade Lab. Students are introduced to the concepts of level broadening and charging energies in artificial atoms (single quantum dots) and molecules (coupled quantum dots).A tutorial level introduction to the...

  11. Introduction to Quantum Dot Lab

    Online Presentations | 31 Mar 2008 | Contributor(s):: Sunhee Lee, Hoon Ryu, Gerhard Klimeck

    The nanoHUB tool "Quantum Dot Lab" allows users to compute the quantum mechanical "particle in a box" problem for a variety of different confinement shapes, such as boxes, ellipsoids, disks, and pyramids. Users can explore, interactively, the energy spectrum and orbital...

  12. Quantum Dot Spectra, Absorption, and State Symmetry: an Exercise

    Teaching Materials | 30 Mar 2008 | Contributor(s):: Gerhard Klimeck

    The tutorial questions based on the Quantum Dot Lab v1.0 available online at Quantum Dot Lab. Students are asked to explore the various different quantum dot shapes, optimize the intra-band absorption through geometry variations, and consider the concepts of state symmetry and eigenstates.

  13. Modeling (Semi) Unstructured Proteins

    Online Presentations | 26 Mar 2008 | Contributor(s):: Michael Colvin

    The past century has seen tremendous progress in determining the biochemical and biophysical processes that constitute life. One exciting consequence of this understanding is the possibility of developing mathematical models of biological function that are accurate and even predictive. My...

  14. Quantum and Semi-classical Electrostatics Simulation of SOI Trigates

    Tools | 19 Feb 2008 | Contributor(s):: Hyung-Seok Hahm, Andres Godoy

    Generate quantum/semi-classical electrostatic simulation results for a simple Trigate structure

  15. CNDO/INDO

    Tools | 09 Oct 2007 | Contributor(s):: Baudilio Tejerina, Jeff Reimers

    Semi-empirical Molecular Orbital calculations.

  16. Computational Nanoscience, Lecture 4: Geometry Optimization and Seeing What You're Doing

    Teaching Materials | 13 Feb 2008 | Contributor(s):: Jeffrey C Grossman, Elif Ertekin

    In this lecture, we discuss various methods for finding the ground state structure of a given system by minimizing its energy. Derivative and non-derivative methods are discussed, as well as the importance of the starting guess and how to find or generate good initial structures. We also briefly...

  17. Finite Height Quantum Well: an Exercise for Band Structure

    Teaching Materials | 31 Jan 2008 | Contributor(s):: David K. Ferry

    Use the Resonant Tunneling Diodes simulation tool on nanoHUB to explore the effects of finite height quantum wells. Looking at a 2 barrier device, 300 K, no bias, other standard variables, and 3 nm thick barriers and a 7 nm quantum well, determine the energies of the two lowest quasi-bound states.

  18. Path Integral Monte Carlo

    Tools | 13 Dec 2007 | Contributor(s):: John Shumway, Matthew Gilbert

    Tool Description

  19. Electrons in Two Dimensions: Quantum Corrals and Semiconductor Microstructures

    Online Presentations | 04 Dec 2007 | Contributor(s):: Eric J. Heller

    The images generated by a scanning tunneling microscope are iconic. Some of the most famous are Don Eigler’s quantum corrals, which reveal not only the guest atoms on a surface but especially the interference patterns of electrons shuttling back and forth along the surface. To understand the...

  20. The Basics of Quantum Monte Carlo

    Online Presentations | 15 Jun 2007 | Contributor(s):: Lucas Wagner, Jeffrey C Grossman, Jeffrey B. Neaton

    Quantum Monte Carlo is a highly accurate method to approximately solve the Schrodinger equation. I explain quantum Monte Carlo in a way that should be accessible to someone who is somewhat familiar with quantum mechanics. The discussion is mostly conceptual.Lucas Wagner is a postdoctoral...