Tags: ballistic MOSFET

All Categories (1-20 of 37)

  1. A Matlab 1D-Poisson-NEGF simulator for 2D FET

    04 Mar 2024 | | Contributor(s):: Chien-Ting Tung

    A Matlab 1D-Poisson-NEGF solver to calculate a 2D FET where the channel is only one atom thick. It assumes the channel thickness is only one point and solves the 1D Poisson and NEGF self-consistently.It also utilizes a Fermi-Dirac integral table from...

  2. Compact NEGF-Based Solver for Double-Gate MOSFETs

    17 Nov 2020 | | Contributor(s):: Fabian Hosenfeld, Alexander Kloes

    Fast simulation of the DC current in a nanoscale double-gate MOSFET including thermionic emission and source-to-drain tunneling current.

  3. Al-Amin Sheikh

    https://nanohub.org/members/160887

  4. Lourdu Deepak

    Hi friends, Currently i'm doing my master in VLSI design, and looking forward to a project in Nano electronics which is totally related to nano fabrication and nano FINFETs and all other explained...

    https://nanohub.org/members/56686

  5. Lecture 1b: Nanotransistors - A Bottom Up View

    20 Jul 2010 | | Contributor(s):: Mark Lundstrom

    MOSFET scaling continues to take transistors to smaller and smaller dimensions. Today, the MOSFET is a true nanoelectronic device – one of enormous importance for computing, data storage, and for communications. In this lecture, I will present a simple, physical model for the nanoscale...

  6. ECE 612 Lecture 26: Heterostructure FETs

    10 Dec 2008 | | Contributor(s):: Mark Lundstrom

    Outline:1) Introduction,2) Heterojunction review,3) Modulation doping,4) I-V characteristics,5) Device Structure / Materials,6) Summary.

  7. ECE 612 Lecture 8: Scattering Theory of the MOSFET II

    08 Oct 2008 | | Contributor(s):: Mark Lundstrom

    Outline: 1) Review and introduction,2) Scattering theory of the MOSFET,3) Transmission under low VDS,4) Transmission under high VDS,5) Discussion,6) Summary.

  8. ECE 612 Lecture 7: Scattering Theory of the MOSFET I

    08 Oct 2008 | | Contributor(s):: Mark Lundstrom

    Outline: 1) Review and introduction,2) Scattering theory of the MOSFET,3) Transmission under low VDS,4) Transmission under high VDS,5) Discussion,6) Summary.

  9. Lecture 3A: The Ballistic MOSFET

    10 Sep 2008 | | Contributor(s):: Mark Lundstrom

    The IV characteristic of the ballistic MOSFET is formally derived. When Boltzmann statistics are assumed, the model developed here reduces to the one presented in Lecture 2. There is no new physics in this lecture - just a proper mathematical derivation of the approach that was developed...

  10. Lecture 3B: The Ballistic MOSFET

    10 Sep 2008 | | Contributor(s):: Mark Lundstrom

    This lecture is a continuation of part 3A. After discussion some bandstructure considerations, it describes how 2D and subthreshold electrostatics are included in the ballistic model.

  11. Physics of Nanoscale Transistors: An Introduction to Electronics from the Bottom Up

    10 Sep 2008 | | Contributor(s):: Mark Lundstrom

    Transistor scaling has pushed channel lengths to the nanometer regime, and advances in nanoscience have opened up many new possibilities for devices. To realize these opportunities, our traditional understanding of electronic devices needs to be complemented with a new perspective that begins...

  12. Lecture 4: Scattering in Nanoscale MOSFETs

    08 Sep 2008 | | Contributor(s):: Mark Lundstrom

    No MOSFET is ever fully ballistic - there is always some carrier scattering. Scattering makes the problem complicated and requires detailed numerical simulations to treat properly. My objective in this lecture is to present a simple, physical picture that describes the essence of the problem and...

  13. Lecture 5: Application to State-of-the-Art FETs

    08 Sep 2008 | | Contributor(s):: Mark Lundstrom

    The previous lessons may seem a bit abstract and mathematical. To see how this all works, we examine measured data and show how the theory presented in the previous lessons help us understand the operation of modern FETs.

  14. Physics of Nanoscale MOSFETs

    26 Aug 2008 | | Contributor(s):: Mark Lundstrom

    Transistor scaling has pushed channel lengths to the nanometer regime where traditional approaches to MOSFET device physics are less and less suitable This short course describes a way of understanding MOSFETs that is much more suitable than traditional approaches when the channel lengths are of...

  15. Lecture 1: Review of MOSFET Fundamentals

    26 Aug 2008 | | Contributor(s):: Mark Lundstrom

    A quick review of the traditional theory of the MOSFET along with a review of key device performance metrics. A short discussion of the limits of the traditional (drift-diffusion) approach and the meaning of ballistic transport is also included.

  16. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    16 Jul 2008 | | Contributor(s):: Xufeng Wang, Daniel Mejia, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor devices

  17. Nano Carbon: From ballistic transistors to atomic drumheads

    14 May 2008 | | Contributor(s):: Paul L. McEuen

    Carbon takes many forms, from precious diamonds to lowly graphite. Surprisingly, it is the latter that is the most prized by nano physicists. Graphene, a single layer of graphite, can serve as an impenetrable membrane a single atom thick. Rolled up into a nanometer-diameter cylinder--a carbon...

  18. Can numerical “experiments” INSPIRE physical experiments?

    20 Dec 2007 | | Contributor(s):: Supriyo Datta

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of computational science and engineering.

  19. Reliability Physics of Nanoscale Transistors

    27 Nov 2007 | | Contributor(s):: Muhammad A. Alam

    This course is now offered on nanoHUB as ECE 695A Reliability Physics of Nanotransistors.

  20. MCW07 Modeling Molecule-Assisted Transport in Nanotransistors

    06 Nov 2007 | | Contributor(s):: Kamil Walczak

    Molecular electronics faces many problems in practical device implementation, due to difficulties with fabrication and gate-ability. In these devices, molecules act as the main conducting channel. One could imagine alternate device structures where molecules act as quantum dots rather than...