A Machine Learning Aided Hierarchical Screening Strategy for Materials Discovery
A Machine Learning Aided Hierarchical Screening Strategy for Materials Discovery
-
1. A Machine Learning aided hiera…
0
00:00/00:00
-
2. Discovery and Design of Novel …
115.81581581581582
00:00/00:00
-
3. Objective
190.19019019019021
00:00/00:00
-
4. A Strategy for Scintillator Di…
242.87620954287621
00:00/00:00
-
5. Objective
322.22222222222223
00:00/00:00
-
6. Why Machine Learning?
335.73573573573577
00:00/00:00
-
7. Machine Learning for Efficient…
398.83216549883218
00:00/00:00
-
8. Perovskite discovery using Mac…
460.79412746079413
00:00/00:00
-
9. Components of ML infrastructur…
546.04604604604606
00:00/00:00
-
10. Components of ML infrastructur…
591.59159159159162
00:00/00:00
-
11. Components of ML infrastructur…
727.660994327661
00:00/00:00
-
12. Components of ML infrastructur…
769.20253586920262
00:00/00:00
-
13. Training data
836.1695028361695
00:00/00:00
-
14. Features: Machine Learning mod…
970.17017017017019
00:00/00:00
-
15. Comparison of perovskite forma…
1007.6743410076743
00:00/00:00
-
16. Formability classification mod…
1085.8191524858191
00:00/00:00
-
17. Stability classification model
1196.9302635969302
00:00/00:00
-
18. Wide/narrow band gap classific…
1254.0540540540542
00:00/00:00
-
19. Novel wide bandgap oxide perov…
2610.4771438104772
00:00/00:00
-
20. Novel wide bandgap oxide perov…
2712.1121121121123
00:00/00:00
-
21. Computational confirmation of …
2730.830830830831
00:00/00:00
-
22. Some more suggestions
2756.5565565565566
00:00/00:00