Tags: circuits

Description

In 1973, SPICE was introduced to the world by Professor Donald O. Pederson of the University of California at Berkeley, and a new era of computer-aided design (CAD) tools was born. As its name implies, SPICE is a "Simulation Program with Integrated Circuit Emphasis." You give it a description of an electrical circuit, made up of resistors, capacitors, inductors, and power sources, and SPICE will predict the performance of that circuit. Instead of bread-boarding new designs in the lab, circuit designers found they could optimize their designs on computers–in effect, using computers to build better computers. Since its introduction, SPICE has been commercialized and released in a dozen variants, such as H-SPICE, P-SPICE, and ADVICE.

Learn more about circuit simulation from the resources on this site, listed below. You might even acquire a taste for SPICE by running examples online.

Teaching Materials (1-5 of 5)

  1. Nanotechnology in Electronics: An Introduction to the units on LEDs, Thermistors, and Transistors

    Teaching Materials | 12 Jan 2020 | Contributor(s):: Jacyln Murray, NNCI Nano

    The purpose of the following group of lab units is to illustrate properties associated with nanotechnology and the electronics industry through utilization of semiconductors.  By using macro-examples of actual nano-circuitry, students will understand what is happening on the...

  2. Quantum Workshop III: LED Circuit and Device Physics

    Teaching Materials | 07 Feb 2015 | Contributor(s):: Stella Quinones

    A hands-on learning exercise used to illustrate the device physics of a light emitting diode (LED) in a simple resistor circuit.  Students explore the photon energy of four LEDs, compare the voltage drop (or forward bias) across the LED, and explain the behavior of the LED under...

  3. A methodology for SPICE-compatible modeling of nanoMOSFETs

    Teaching Materials | 17 Nov 2010 | Contributor(s):: Alba Graciela Avila, David Espejo

    An original SPICE-compatible model for Intel's 45nm High-K MOSFET is presented. It takes into account some Quantum-Mechanical Effects that occur at small scale like Channel Length Modulation (CLM), Threshold Voltage variation and Velocity saturation, and is the first in his class that is not...

  4. Homework for Circuit Simulation: ECE 255

    Teaching Materials | 08 Jan 2006 | Contributor(s):: Gerold Neudeck

    This collection of homeworks is used in ECE 255 "Introduction to Electronic Analysis and Design" (Purdue University). Students do their work, orsometimes check their work, by using the Spice 3F4 simulator on the nanoHUB.

  5. Resonant Tunneling Diodes: an Exercise

    Teaching Materials | 06 Jan 2006 | Contributor(s):: H.-S. Philip Wong

    This homework assignment was created by H.-S. Philip Wong for EE 218 "Introduction to Nanoelectronics and Nanotechnology" (Stanford University). It includes a couple of simple "warm up" exercises and two design problems, intended to teach students the electronic properties...