Tags: NEMS/MEMS

Description

The term Nanoelectromechanical systems or NEMS is used to describe devices integrating electrical and mechanical functionality on the nanoscale. NEMS typically integrate transistor-like nanoelectronics with mechanical actuators, pumps, or motors, and may thereby form physical, biological, and chemical sensors.

Microelectromechanical systems (MEMS) (also written as micro-electro-mechanical, MicroElectroMechanical or microelectronic and microelectromechanical systems) is the technology of very small mechanical devices driven by electricity; it merges at the nano-scale into nanoelectromechanical systems (NEMS) and nanotechnology.

MEMS are separate and distinct from the hypothetical vision of molecular nanotechnology or molecular electronics. MEMS are made up of components between 1 to 100 micrometres in size (i.e. 0.001 to 0.1 mm) and MEMS devices generally range in size from 20 micrometres (20 millionths of a metre) to a millimetre. They usually consist of a central unit that processes data, the microprocessor and several components that interact with the outside such as microsensors

Learn more about NEMS/MEMS from the many resources on this site, listed below. More information on NEMS/MEMS can be found here.

Resources (161-180 of 224)

  1. First Principles-Based Modeling of materials: Towards Computational Materials Design

    Online Presentations | 20 Apr 2006 | Contributor(s):: Alejandro Strachan

    Molecular dynamics (MD) simulations with accurate, first principles-based interatomic potentials is a powerful tool to uncover and characterize the molecular-level mechanisms that govern the chemical, mechanical and optical properties of materials. Such fundamental understanding is critical to...

  2. CENEMS

    Tools | 20 Apr 2006 | Contributor(s):: Gang Li, Narayan Aluru

    Computes the surface charge density distribution on the surface of the conductors in a multiconductor system

  3. EDA Challenges in Nanoscale Design: A Synopsys Perspective

    Online Presentations | 11 Apr 2006 | Contributor(s):: Rich Goldman

    Rich Goldman gives an overview of the current state ofthe semiconductor and EDA (Electronic Design Automation) industry with aspecial focus on the impact of nanometer scale design on design tools andthe economics of the industry.

  4. Introduction to the CENEMS Simulation Tool (Learning Module)

    Series | 15 Apr 2006 | Contributor(s):: , Narayan Aluru

    This learning module is an introduction to the CENEMS simulation tool. Nanoelectromechanical systems (NEMS) often contains multiple nanoscale conductors. CENEMS is a user-friendly 2-D classical electrostatic analysis tool that computes the charge density distribution on the surface of the...

  5. Molecular Dynamics Studies of Gaseous Transport

    Online Presentations | 05 Apr 2006 | Contributor(s):: Ki-Ho Lee, Jason Myers, Susan Sinnott

    Carbon nanotubes (CNTs) have generated a great deal of interest due to their unique properties. In this study, we examine the transport properties of various nanotubes using REBO-MD to determine the effects of diameter and chirality on transport mode. Both oxygen and methane were diffused through...

  6. Thermal Microsystems for On-Chip Thermal Engineering

    Online Presentations | 04 Apr 2006 | Contributor(s):: Suresh V. Garimella

    Electro-thermal co-design at the micro- and nano-scales is critical for achieving desired performance and reliability in microelectronic circuits. Emerging thermal microsystems technologies for this application area are discussed, with specific examples including a novel micromechanical...

  7. Tribological Properties of Carbon Nanotube Bundles

    Online Presentations | 03 Apr 2006 | Contributor(s):: SeongJun Heo, Susan Sinnott

    The tribological properties of carbon nanotube(CNT) bundles are investigated in this research using classical molecular dynamics(MD) simulations. Bundle of hollow single walled CNT or CNT filled with C60 is placed between two hydrogen-terminated amorphous diamond-like carbon(DLC) substrates. The...

  8. The Effect of Temperature Control on the Mechanical Behavior of Carbon Nanotubes

    Online Presentations | 29 Mar 2006 | Contributor(s):: SeongJun Heo, Susan Sinnott

    The effect of thermostat configurations on the mechanical behavior of empty and butane (n-C4H10) filled (10,10) carbon nanotubes (CNTs) is examined using classical, atomistic, molecular dynamics (MD) simulations. In particular, the influence of different types of thermostats, relative numbers of...

  9. Mark Ratner Interview on Nanotechnology

    Online Presentations | 23 Mar 2006 | Contributor(s):: Mark Ratner, Krishna Madhavan

    Nanotechnology interview with Krishna Madhavan.

  10. Irradiation and Nanomechanics of Multi-Walled Carbon Nanotubes

    Online Presentations | 23 Mar 2006 | Contributor(s):: Sharon Pregler, Susan Sinnott

    Irradiation of nanotube structures with electron and ion beams has been used to produce functionalized nanotubes and fundamentally new structures, including junctions. Here, we build on previous studies to investigate the low-energy electron and ion (Ar and CF3) beam irradiation of triple walled...

  11. Engineering the Fiber-Matrix Interface in Carbon Nanotube Composites

    Online Presentations | 23 Mar 2006 | Contributor(s):: Sharon Pregler, Yanhong Hu, Susan Sinnott

    Particle depositions on polymer and carbon substrates to induce surface chemical modification are a growing research topic in particle-surface interactions due to localized deposition energy and the high density of molecules impacting the surface. Previous simulations have shown that particle...

  12. Bending Properties of Carbon Nanotubes

    Online Presentations | 21 Mar 2006 | Contributor(s):: SeongJun Heo, Susan Sinnott

    The effect of filling carbon nanotubes on the mechanical, especially bending, behavior of empty and filled (10,10) carbon nanotubes (CNTs) is examined using classical, atomistic, molecular dynamics (MD) simulations. In particular, influences of different filling materials like C60 or other CNT...

  13. Molecular Transport Structures: Elastic Scattering, Vibronic Effects and Beyond

    Online Presentations | 13 Feb 2006 | Contributor(s):: Mark Ratner, Abraham Nitzan, Misha Galperin

    Current experimental efforts are clarifying quite beautifully the nature of charge transport in so-called molecular junctions, in which a single molecule provides the channel for current flow between two electrodes. The theoretical modeling of such structures is challenging, because of the...

  14. A Gentle Introduction to Nanotechnology and Nanoscience

    Online Presentations | 13 Feb 2006 | Contributor(s):: Mark Ratner

    While the Greek root nano just means dwarf, the nanoscale has become a giant focus of contemporary science and technology. We will examine the fundamental issues underlying the excitement involved in nanoscale research - what, why and how. Specific topics include assembly, properties,...

  15. Hierarchical Physical Models for Analysis of Electrostatic Nanoelectromechanical Systems (NEMS)

    Online Presentations | 05 Jan 2006 | Contributor(s):: Narayan Aluru

    This talk will introduce hierarchical physical models and efficient computational techniques for coupled analysis of electrical, mechanical and van der Waals energy domains encountered in Nanoelectromechanical Systems (NEMS). Numerical results will be presented for several silicon...

  16. Atomic Force Microscopy

    Online Presentations | 01 Dec 2005 | Contributor(s):: Arvind Raman

    Atomic Force Microscopy (AFM) is an indispensible tool in nano science for the fabrication, metrology, manipulation, and property characterization of nanostructures. This tutorial reviews some of the physics of the interaction forces between the nanoscale tip and sample, the dynamics of the...

  17. First Principles-based Atomistic and Mesoscale Modeling of Materials

    Online Presentations | 01 Dec 2005 | Contributor(s):: Alejandro Strachan

    This tutorial will describe some of the most powerful and widely used techniques for materials modeling including i) first principles quantum mechanics (QM), ii) large-scale molecular dynamics (MD) simulations and iii) mesoscale modeling, together with the strategies to bridge between them. These...

  18. Wireless Integrated MicroSystems (WIMS): Coming Revolution in the Gathering of Information

    Online Presentations | 01 Sep 2005 | Contributor(s):: Kensall D. Wise

    Wireless integrated microsystems promise to become pervasive during the coming decade in applications ranging from health care and environmental monitoring to homeland security. Merging low-power embedded computing, wireless interfaces, and wafer-level packaging with microelectromechanical...

  19. Nanoparticle Synthesis and Assembly for Biological Sensing

    Online Presentations | 25 Oct 2005 | Contributor(s):: Gil Lee

    Nanoparticles have unique physical and chemical properties that make them very useful for biological and chemical sensing. For example, colloidal gold has been used as an optical transducer for antibody based sensing for over twenty years and is the basis for a many of the point-of-use diagnostic...

  20. Laser Cooling of Solids

    Online Presentations | 06 Oct 2005 | Contributor(s):: Massoud Kaviany

    Enhanced laser cooling of ion doped nanocrystalline powders (e.g., Yb3+: Y2O3) can be achieved by enhancing the anti-Stokes, off-resonance absorption, which is proportional to the three design-controlled factors, namely, dopant concentration, pumping field energy, and anti-Stokes transition rate....