Support

Support Options

Submit a Support Ticket

 

Tags: circuits

Description

In 1973, SPICE was introduced to the world by Professor Donald O. Pederson of the University of California at Berkeley, and a new era of computer-aided design (CAD) tools was born. As its name implies, SPICE is a "Simulation Program with Integrated Circuit Emphasis." You give it a description of an electrical circuit, made up of resistors, capacitors, inductors, and power sources, and SPICE will predict the performance of that circuit. Instead of bread-boarding new designs in the lab, circuit designers found they could optimize their designs on computers–in effect, using computers to build better computers. Since its introduction, SPICE has been commercialized and released in a dozen variants, such as H-SPICE, P-SPICE, and ADVICE.

Learn more about circuit simulation from the resources on this site, listed below. You might even acquire a taste for SPICE by running examples online.

Resources (1-20 of 51)

  1. A Primer on Semiconductor Device Simulation

    23 Jan 2006 | Online Presentations | Contributor(s): Mark Lundstrom

    Computer simulation is now an essential tool for the research and development of semiconductor processes and devices, but to use a simulation tool intelligently, one must know what's "under the...

    http://nanohub.org/resources/980

  2. a TCAD Lab

    29 Oct 2008 | Tools | Contributor(s): Gerhard Klimeck, Dragica Vasileska

    An Assembly of TCAD tools for circuit, device, and process simulation

    http://nanohub.org/resources/atcadlab

  3. Amine Linked Single Molecule Circuits: Systematic Measurements & Understanding

    02 Jul 2007 | Online Presentations | Contributor(s): Mark S Hybertsen

    Formation and function of well-defined linkages between organic molecules and metallic electrodes has been a key issue in the field of molecular electronics. We recently discovered that the...

    http://nanohub.org/resources/2894

  4. An Electrical Engineering Perspective on Molecular Electronics

    26 Oct 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths that are less than...

    http://nanohub.org/resources/513

  5. Atomic Force Microscopy

    01 Dec 2005 | Online Presentations | Contributor(s): Arvind Raman

    Atomic Force Microscopy (AFM) is an indispensible tool in nano science for the fabrication, metrology, manipulation, and property characterization of nanostructures. This tutorial reviews some of...

    http://nanohub.org/resources/520

  6. CMOS Nanotechnology

    07 Jul 2004 | Online Presentations | Contributor(s): Mark Lundstrom

    In non-specialist language, this talk introduces CMOS technology used for modern electronics. Beginning with an explanation of "CMOS," the speaker relates basic system considerations of transistor...

    http://nanohub.org/resources/166

  7. CMOS-Nano Hybrid Technology: a nanoFPGA-related study

    04 Apr 2007 | Online Presentations | Contributor(s): Wei Wang

    Dr. Wei Wang received his PhD degree in 2002 from Concordia University, Montreal, QC, Canada, in Electrical and Computer Engineering. From 2002 to 2004, he was an assistant professor in the...

    http://nanohub.org/resources/2567

  8. ECE 612 Lecture 22: CMOS Circuit Essentials

    24 Nov 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: 1) The CMOS inverter, 2) Speed, 3) Power, 4) Circuit performance, 5) Metrics, 6) Limits. This lecture is an overview of CMOS circuits. For a more detailed presentation, the...

    http://nanohub.org/resources/5927

  9. ECE 612 Lecture 2: Introduction to Device Simulation

    08 Aug 2006 | Online Presentations | Contributor(s): Mark Lundstrom

    http://nanohub.org/resources/1699

  10. Energy and Nanoscience A More Perfect Union

    29 Mar 2009 | Online Presentations | Contributor(s): Mark A. Ratner

    Huge problems of energy and sustainability confront the science/engineering community, mankind, and our planet. The energy problem comes in many dimensions, including supply, demand, conservation,...

    http://nanohub.org/resources/6554

  11. Exploring CMOS-Nano Hybrid Technology in Three Dimensions

    31 Mar 2008 | Online Presentations | Contributor(s): Wei Wang

    CMOS-nano hybrid technology incorporate the advantages of both traditional CMOS and novel nanowire/nanotube structures, which will enhance future IC performances and create long-term...

    http://nanohub.org/resources/4216

  12. Exponential Challenges, Exponential Rewards - The Future of Moore's Law

    14 Dec 2004 | Online Presentations | Contributor(s): Shekhar Borkar

    Three exponentials have been the foundation of today's electronics, which are often taken for granted—namely transistor density, performance, and energy. Moore's Law captures the impact of...

    http://nanohub.org/resources/177

  13. Fabrication of a MOSFET within a Microprocessor

    16 Nov 2005 | Animations | Contributor(s): John C. Bean

    This resource depicts the step-by-step process by which the transistors of an integrated circuit are made.

    http://nanohub.org/resources/440

  14. History of Semiconductor Engineering

    28 Jun 2006 | Online Presentations | Contributor(s): Bo Lojek

    When basic researchers started working on semiconductors during the late nineteen thirties and on integrated circuits at the end of the nineteen fifties, they did not know that their work would...

    http://nanohub.org/resources/1609

  15. Homework for Circuit Simulation: ECE 255

    08 Jan 2006 | Teaching Materials | Contributor(s): Gerold W. Neudeck

    This collection of homeworks is used in ECE 255 "Introduction to Electronic Analysis and Design" (Purdue University). Students do their work, or sometimes check their work, by using the Spice...

    http://nanohub.org/resources/931

  16. Investigation of the Electrical Characteristics of Triple-Gate FinFETs and Silicon-Nanowire FETs

    08 Aug 2006 | Online Presentations | Contributor(s): Monica Taba, Gerhard Klimeck

    Electrical characteristics of various Fin field-effect transistors (FinFETs) and silicon-nanowires were analyzed and compared using a modified three-dimensional self-consistent quantum-mechanical...

    http://nanohub.org/resources/1715

  17. Logic Devices and Circuits on Carbon Nanotubes

    05 Apr 2006 | Online Presentations | Contributor(s): Joerg Appenzeller

    Over the last years carbon nanotubes (CNs) have attracted an increasing interest as building blocks for nano-electronics applications. Due to their unique properties enabling e.g. ballistic...

    http://nanohub.org/resources/1487

  18. MCW07 Conductance Switching in Fluorene/TiO2 Molecular Heterojunctions

    13 Sep 2007 | Online Presentations | Contributor(s): Richard L. McCreery

    Molecular junctions consisting of a monolayer of fluorene and 10 nm of TiO2 between conducting contacts exhibit a memory effect upon positive polarization of the of the TiO2 for a few...

    http://nanohub.org/resources/3071

  19. MCW07 Exploring Trends in Conductance for Well-Defined Single Molecule Circuits

    04 Apr 2009 | Online Presentations | Contributor(s): Mark S Hybertsen

    In our recent research, we have been able to measure and characterize the impact of intrinsic molecular properties on the conductance of single molecule circuits formed with amine-gold linkages....

    http://nanohub.org/resources/3077

  20. Metal Oxide Nanowires as Gas Sensing Elements: from Basic Research to Real World Applications

    21 Sep 2009 | Online Presentations | Contributor(s): Andrei Kolmakov

    Quasi 1-D metal oxide single crystal chemiresistors are close to occupy their specific niche in the real world of solid state sensorics. Potentially, the major advantage of this kind of sensors...

    http://nanohub.org/resources/5738

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.