Support Options

Submit a Support Ticket

Home Tags NEGF Resources

Tags: NEGF


The non-equilibrium Greens function (NEGF) formalism provides a powerful conceptual and computational framework for treating quantum transport in nanodevices. It goes beyond the Landauer approach for ballistic, non-interacting electronics to include inelastic scattering and strong correlation effects at an atomistic level.

Check out Supriyo Datta's NEGF page for more information, or browse through the various resources listed below.

Resources (1-20 of 148)

  1. ECE 495N: Fundamentals of Nanoelectronics Lecture Notes (Fall 2009)

    04 Feb 2010 | Teaching Materials | Contributor(s): Mehdi Salmani Jelodar, Supriyo Datta (editor)

    Lecture notes for the Fall 2009 teaching of ECE 495: Fundamentals of Nanoelectronics.

  2. 2003 Molecular Conduction Workshop Agenda

    09 Jul 2003 | Presentation Materials

    This workshop brought together leading groups in this field to discuss status and key challenges in molecular electronics. Both experimental and theoretical/modeling efforts were discussed.

  3. 2004 Computational Materials Science Summer School

    29 Aug 2005 | Workshops

    This short course will explore a range of computational approaches relevant for nanotechnology.

  4. 2004 Linking Bio and Nano Symposium

    26 Jul 2004 | Workshops

    Explore ways universities can work together in Bio-NanoTechnology. Discover research opportunities in this emerging area. Network with professionals and researchers who share common interests....

  5. 2004 Molecular Conduction Workshop

    08 Jul 2004 | Workshops

    The tutorials supplied below were part of the Molecular Conduction Workshop held at Northwestern University in July of 2004.

  6. 2009 NCN@Purdue Summer School: Electronics from the Bottom Up

    22 Sep 2009 | Workshops | Contributor(s): Supriyo Datta, Mark Lundstrom, Muhammad A. Alam, Joerg Appenzeller

    The school will consist of two lectures in the morning on the Nanostructured Electronic Devices: Percolation and Reliability and an afternoon lecture on Graphene Physics and Devices. A hands on...

  7. 3D Topological Insulator Nanowire NEGF Simulation on GPU

    28 May 2015 | Downloads | Contributor(s): Gaurav Gupta

    This code developed in C and CUDA simulates the carrier transport in three-dimensional (3D) topological insulator (TI) nanowire, with Bi2Se3 as exemplar material, with or...

  8. A Quantum Mechanical Analysis of Channel Access Geometry and Series Resistance in Nanoscale Transistors

    19 Oct 2006 | Papers | Contributor(s): Ramesh Venugopal, Sebastien Goasguen, Supriyo Datta, Mark Lundstrom

    In this paper, we apply a two-dimensional quantum mechanical simulation scheme to study the effect of channel access geometries on device performance. This simulation scheme solves the...

  9. A Three-Dimensional Quantum Simulation of Silicon Nanowire Transistors with the Effective-Mass Approximation

    30 Oct 2006 | Papers | Contributor(s): Jing Wang, Eric Polizzi, Mark Lundstrom

    The silicon nanowire transistor (SNWT) is a promising device structure for future integrated circuits, and simulations will be important for understanding its device physics and assessing its...

  10. A Top-Down Introduction to the NEGF Approach

    14 Jun 2004 | Online Presentations | Contributor(s): Mark Lundstrom

    A Top-Down Introduction to the NEGF Approach

  11. ANGEL - A Nonequilibrium Green Function Solver for LEDs

    18 Jan 2010 | Tools | Contributor(s): sebastian steiger

    An MPI-parallelized implementation of 1-D NEGF for heterostructures. Includes off-diagonal scattering. Effective mass band structure for electrons and holes. The online tool only provides basic...

  12. ANGEL - A Nonequilibrium Green's Function Solver for LEDs

    07 Feb 2010 | Downloads | Contributor(s): sebastian steiger

    Introducing ANGEL, a Nonequilibrium Green’s Function code aimed at describing LEDs. ANGEL uses a description close to the classic NEMO-1D paper (Lake et al., JAP 81, 7845 (1997)) to model...

  13. Application of the Keldysh Formalism to Quantum Device Modeling and Analysis

    14 Jan 2008 | Papers | Contributor(s): Roger Lake

    The effect of inelastic scattering on quantum electron transport through layered semi-conductor structures is studied numerically using the approach based on the non-equilibrium Green's function...

  14. Atomistic Green\'s Function Method 1-D Atomic Chain Simulation

    16 Apr 2007 | Tools | Contributor(s): Zhen Huang, Wei Zhang, Timothy S Fisher, Sridhar Sadasivam

    Calculation of Thermal Conductance of an Atomic Chain

  15. Bandstructure in Nanoelectronics

    01 Nov 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material...

  16. BNC Annual Research Symposium: Nanoscale Energy Conversion

    23 Apr 2007 | Online Presentations | Contributor(s): Timothy S Fisher

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the...

  17. Can numerical “experiments” INSPIRE physical experiments?

    20 Dec 2007 | Online Presentations | Contributor(s): Supriyo Datta

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of...

  18. Carbon Nanotube Electronics: Modeling, Physics, and Applications

    28 Jun 2013 | Papers | Contributor(s): Jing Guo

    In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias transport...

  19. Carbon Nanotube Electronics: Modeling, Physics, and Applications

    30 Oct 2006 | Papers | Contributor(s): Jing Guo

    In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias...

  20. CNTFET Lab

    13 Mar 2006 | Tools | Contributor(s): Neophytos Neophytou, Shaikh S. Ahmed, Eric Polizzi, Gerhard Klimeck, Mark Lundstrom

    Simulates ballistic transport properties in 3D Carbon NanoTube Field Effect Transistor (CNTFET) devices, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.