You must login before you can run this tool.

## MIT Atomic-Scale Modeling Toolkit

Tools for Atomic-Scale Modeling

#### Category

#### Published on

#### Abstract

This set of simulation tools has been developed for use with a course originally developed at UC Berkeley, taught by Jeffrey Grossman, which provides students with the fundamentals of computational problem-solving techniques that are used to understand and predict properties of nanoscale systems. Emphasis is placed on how to use simulations effectively, intelligently, and cohesively to predict properties that occur at the nanoscale for real systems. The course is designed to present a broad overview of computational nanoscience and is therefore suitable for both experimental and theoretical researchers. The following simulations are run by the tool: * Averages and Error Bars * Molecular Dynamics (Lennard-Jones) * Molecular Dynamics (Carbon Nanostructures and More) * Monte Carlo (Hard Sphere) * Monte Carlo (Ising Model) * Quantum Chemistry (GAMESS) * Density-Functional Theory (Quantum Espresso) * Density-Functional Theory (SIESTA) * Quantum Monte Carlo (QWalk) Any questions, comments, difficulties should be directed to Jeff.

#### Credits

Development Team: David Strubbe, Daniel Richards, Elif Ertekin, Jeff Grossman, Justin Riley.

Software Tools for Academics and Researchers (http://web.mit.edu/star)

Office of Educational Innovation and Technology (http://oeit.mit.edu)

Massachusetts Institute of Technology (http://web.mit.edu)

#### Cite this work

Researchers should cite this work as follows: