Tags: band structure

Description

In solid-state physics, the electronic band structure of a solid describes ranges of energy that an electron is "forbidden" or "allowed" to have. It is a function of the diffraction of the quantum mechanical electron waves in the periodic crystal lattice with a specific crystal system and Bravais lattice. The band structure of a material determines several characteristics, in particular its electronic and optical properties. More information on Band structure can be found here.

Tools (1-19 of 19)

  1. MIT Atomic-Scale Modeling Toolkit

    Tools | 15 Jan 2008 | Contributor(s):: David A Strubbe, Enrique Guerrero, daniel richards, Elif Ertekin, Jeffrey C Grossman, Justin Riley

    Tools for Atomic-Scale Modeling

  2. DFT Material Properties Simulator

    Tools | 21 Jul 2015 | Contributor(s):: Gustavo Javier, Usama Kamran, David M Guzman, Alejandro Strachan, Peilin Liao, Robert Joseph Appleton

    Compute electronic and mechanical properties of materials from DFT calculations with 1-Click

  3. Berkeley GW

    Tools | 27 Sep 2009 | Contributor(s):: Alexander S McLeod, Peter Doak, Sahar Sharifzadeh, Jeffrey B. Neaton

    This is an educational tool that illustrates the calculation of the electronic structure of materials using many-body perturbation theory within the GW approximation

  4. DFT calculations with Quantum ESPRESSO

    Tools | 07 Jul 2010 | Contributor(s):: Janam Jhaveri, Ravi Pramod Kumar Vedula, Alejandro Strachan, Benjamin P Haley

    DFT calculations of molecules and solids

  5. nanoMATERIALS SeqQuest DFT

    Tools | 04 Feb 2008 | Contributor(s):: Ravi Pramod Kumar Vedula, Greg Bechtol, Benjamin P Haley, Alejandro Strachan

    DFT calculations of materials

  6. SIESTA

    Tools | 05 Mar 2008 | Contributor(s):: Lucas Wagner, Jeffrey C Grossman, Joe Ringgenberg, daniel richards, Alexander S McLeod, Eric Isaacs, Jeffrey B. Neaton

    Use SIESTA to perform electronic structure calculations

  7. Thermoelectric Power Factor Calculator for Superlattices

    Tools | 18 Oct 2008 | Contributor(s):: Terence Musho, Greg Walker

    Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in 1D Superlattice Structures using Non-Equilibrium Green's Functions

  8. Thermoelectric Power Factor Calculator for Nanocrystalline Composites

    Tools | 18 Oct 2008 | Contributor(s):: Terence Musho, Greg Walker

    Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in a 2D Nanocrystalline Composite Structure using Non-Equilibrium Green's Functions

  9. 1D Heterostructure Tool

    Tools | 04 Aug 2008 | Contributor(s):: Arun Goud Akkala, Sebastian Steiger, Jean Michel D Sellier, Sunhee Lee, Michael Povolotskyi, Tillmann Christoph Kubis, Hong-Hyun Park, Samarth Agarwal, Gerhard Klimeck, James Fonseca, Archana Tankasala, Kuang-Chung Wang, Chin-Yi Chen, Fan Chen

    Poisson-Schrödinger Solver for 1D Heterostructures

  10. ACUTE

    Tools | 17 Aug 2008 | Contributor(s):: Dragica Vasileska, Gerhard Klimeck, Xufeng Wang, Stephen M. Goodnick

    This tool is used for the Advanced Computational Electronics Tool Based Curricula

  11. AQME - Advancing Quantum Mechanics for Engineers

    Tools | 12 Aug 2008 | Contributor(s):: Gerhard Klimeck, Xufeng Wang, Dragica Vasileska

    One-stop-shop for teaching quantum mechanics for engineers

  12. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    Tools | 16 Jul 2008 | Contributor(s):: Xufeng Wang, Daniel Mejia, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor devices

  13. Simple Photonic Crystals

    Tools | 16 Aug 2007 | Contributor(s):: Jing Ouyang, Xufeng Wang, Minghao Qi

    Photonic Crystal characteristics in an easy way

  14. StrainBands

    Tools | 15 Jun 2007 | Contributor(s):: Joe Ringgenberg, Joydeep Bhattacharjee, Jeffrey B. Neaton, Jeffrey C Grossman, Eric Schwegler

    Explore the influence of strain on first-principles bandstructures of semiconductors.

  15. CNTbands

    Tools | 14 Dec 2006 | Contributor(s):: Gyungseon Seol, Youngki Yoon, James K Fodor, Jing Guo, Akira Matsudaira, Diego Kienle, Gengchiau Liang, Gerhard Klimeck, Mark Lundstrom, Ahmed Ibrahim Saeed

    This tool simulates E-k and DOS of CNTs and graphene nanoribbons.

  16. CNTphonons

    Tools | 30 May 2006 | Contributor(s):: Marcelo Kuroda, Salvador Barraza-Lopez, J. P. Leburton

    Calculates the phonon band structure of carbon nanotubes using the force constant method.

  17. Band Structure Lab

    Tools | 19 May 2006 | Contributor(s):: Samik Mukherjee, Kai Miao, Abhijeet Paul, Neophytos Neophytou, Raseong Kim, Junzhe Geng, Michael Povolotskyi, Tillmann Christoph Kubis, Arvind Ajoy, Bozidar Novakovic, James Fonseca, Hesameddin Ilatikhameneh, Sebastian Steiger, Michael McLennan, Mark Lundstrom, Gerhard Klimeck

    Computes the electronic and phonon structure of various materials in the spatial configuration of bulk , quantum wells, and wires

  18. CNT_bands

    Tools | 09 Sep 2005 | Contributor(s):: Jing Guo, Akira Matsudaira

    Computes E(k) and the density-of-states (DOS) vs. energy for a carbon nanotube

  19. MSL Simulator

    Tools | 17 Jun 2005 | Contributor(s):: Kyeongjae Cho

    Easy-to-use interface for designing and analyzing electronic properties of different nano materials