Tags: devices

Description

On June 30, 1948, AT&T Bell Labs unveiled the transitor to the world, creating a spark of explosive economic growth that would lead into the Information Age. William Shockley led a team of researchers, including Walter Brattain and John Bardeen, who invented the device. Like the existing triode vacuum tube device, the transistor could amplify signals and switch currents on and off, but the transistor was smaller, cheaper, and more efficient. Moreover, it could be integrated with millions of other transistors onto a single chip, creating the integrated circuit at the heart of modern computers.

Today, most transistors are being manufactured with a minimum feature size of 60-90nm--roughly 200-300 atoms. As the push continues to make devices even smaller, researchers must account for quantum mechanical effects in the device behavior. With fewer and fewer atoms, the positions of impurities and other irregularities begin to matter, and device reliability becomes an issue. So rather than shrink existing devices, many researchers are working on entirely new devices, based on carbon nanotubes, spintronics, molecular conduction, and other nanotechnologies.

Learn more about transistors from the many resources on this site, listed below. Use our simulation tools to simulate performance characteristics for your own devices.

All Categories (1-20 of 341)

  1. Dr. Ali Imran

    https://nanohub.org/members/287726

  2. Introduction to Electronics

    17 Apr 2020 | Contributor(s):: Center for E3S, Aaron Ragsdale

    Aaron Ragsdale, a former Master's student and researcher at Stanford University, leads an introductory course on common components, devices and elementary design techniques.This course consists of four modules:1: Fundamental Variables & Electrical Components2: Circuit...

  3. Soft Electronic and Microfluidic Systems for the Skin

    23 May 2019 | | Contributor(s):: John A. Rogers

    This talk describes the key ideas, and presents some of the most recent device examples, including wireless, skin-like electronic 'tattoos' for continuous monitoring of vital signs in neonatal intensive care, microfluidic/electronic platforms that can capture, store and perform...

  4. Bandstructure Effects in Nano Devices With NEMO: from Basic Physics to Real Devices and to Global Impact on nanoHUB.org

    08 Mar 2019 | | Contributor(s):: Gerhard Klimeck

    This presentation will intuitively describe how bandstructure is modified at the nanometer scale and what some of the consequences are on the device performance.

  5. Organic Photonics and Electronics: The Endless Frontier

    21 Feb 2019 | | Contributor(s):: Bernard Kippelen

    In this talk, we will discuss how printable organic conjugated semiconducting molecules and polymers are creating new disruptive technologies that are impacting all industries. We will present recent advances in various solid-state device platforms including, organic light-emitting diodes...

  6. Zach Scott

    I'm an undergrad at Texas A&M almost done with a EE degree!

    https://nanohub.org/members/218734

  7. Somineni Saikumar

    https://nanohub.org/members/210051

  8. [Illinois] Nano-scale Electronic and Optoelectronic Devices Based on Two-dimensional Materials

    13 Apr 2017 | | Contributor(s):: Wenjuan Zhu

    9/8/2016 MNTL Industry Affiliates Program

  9. [Illinois] New directions in III-V MBE: from materials to devices

    13 Apr 2017 | | Contributor(s):: Minjoo Larry Lee

    9/8/2016 MNTL Industry Affiliates Program

  10. [Illinois] Piezoelectric MEMS Devices for Future RF Front Ends

    13 Apr 2017 | | Contributor(s):: Songbin Gong

    9/8/2016 MNTL Industry Affiliates Program

  11. Carlos Rodolfo B. Lopes Souza

    https://nanohub.org/members/160119

  12. Tissue-Level Communication Through Patterning Of Intercellular Ca2+ Wave Dynamics

    22 Nov 2016 | | Contributor(s):: Jeremiah J. Zartman

    Here we characterize periodic intercellular Ca2+ waves (ICWs) in a model organ system of epithelial growth and patterning—the Drosophila wing imaginal disc. We developed a novel regulated environment for micro-organs (REM-Chip) device that enable a broad range of genetic, chemical and...

  13. NEMO5, a Parallel, Multiscale, Multiphysics Nanoelectronics Modeling Tool
: From Basic Physics to Real Devices and to Global Impact on nanoHUB.org

    10 Nov 2016 | | Contributor(s):: Gerhard Klimeck

    The Nanoelectronic Modeling tool suite NEMO5 is aimed to comprehend the critical multi-scale, multi-physics phenomena and deliver results to engineers, scientists, and students through efficient computational approaches. NEMO5’s general software framework easily includes any kind of...

  14. NEMO5 and 2D Materials: Tuning Bandstructures, Wave Functions and Electrostatic Screening

    19 Oct 2016 | | Contributor(s):: Tillmann Christoph Kubis

    In this talk, I will briefly discuss the MLWF approach and compare it to DFT and atomistic tight binding. Initial results using the MLWF approach for 2D material based devices will be discussed and compared to experiments. These results unveil systematic band structure changes as functions of the...

  15. Auger Generation as an Intrinsic Limit to Tunneling Field-Effect Transistor Performance

    22 Sep 2016 | | Contributor(s):: Jamie Teherani

    Many in the microelectronics field view tunneling field-effect transistors (TFETs) as society’s best hope for achieving a > 10× power reduction for electronic devices; however, despite a decade of considerable worldwide research, experimental TFET results have significantly...

  16. NEMO5, a Parallel, Multiscale, Multiphysics Nanoelectronics Modeling Tool


    19 Sep 2016 | | Contributor(s):: Gerhard Klimeck

    The Nanoelectronic Modeling tool suite NEMO5 is aimed to comprehend the critical multi-scale, multi-physics phenomena and deliver results to engineers, scientists, and students through efficient computational approaches. NEMO5’s general software framework easily includes any kind of...

  17. YASWANTH SANTHA HRUDAY JAGILANKA

    https://nanohub.org/members/146585

  18. Multi-Scale Modeling of Self-Heating Effects in Nano-Devices

    21 Apr 2016 | | Contributor(s):: Suleman Sami Qazi, Akash Anil Laturia, Robin Louis Daugherty, Katerina Raleva, Dragica Vasileska

    IWCE 2015 presentation. This paper discusses a multi-scale device modeling scheme for analyzing self-heating effects in nanoscale silicon devices. A 2D/3D particle-based device simulator is self-consistently coupled to an energy balance solver for the acoustic and optical phonon bath. This...

  19. Electronic and Vibrational Properties of 2D Materials from Monolayer to Bulk: Opportunity Unlimited

    21 Apr 2016 | | Contributor(s):: Mahesh R Neupane

    IWCE 2015 invited presentation. The placement of two dimensional (2D) materials such as hexagonal boron nitride (h-BN) and transition metal dichalcogenide (TMDC) at the forefront of materials and device research was pioneered by the discovery of graphene, an atomically thin 2D allotrope of...

  20. nanoHUB - Educational Tour de Force

    14 Jan 2016 | | Contributor(s):: David K. Ferry

    nanoHUB was originally created to bring together the computational electronics world as a place where programs and results could be efficiently shared. For that purpose, it has matured and grown to where it is a major force in the area. But, it can also be a great tool for education, an...