Tags: MOSFET

Description

The metal–oxide–semiconductor field-effect transistor is a device used for amplifying or switching electronic signals. In MOSFETs, a voltage on the oxide-insulated gate electrode can induce a conducting channel between the two other contacts called source and drain. The channel can be of n-typeor p-type, and is accordingly called an nMOSFET or a pMOSFET (also commonly nMOS, pMOS). It is by far the most common transistor in both digital and analog circuits, though the bipolar junction transistor was at one time much more common. More information on MOSFET can be found here.

All Categories (1-20 of 168)

  1. Piaohan Xu

    https://nanohub.org/members/338173

  2. IWCN 2021: Simulation of Ballistic Spin-MOSFET Devices with Ferromagnetic Channels

    15 Jul 2021 | | Contributor(s):: Patrizio Graziosi, Neophytos Neophytou

    In this work, using the semiclassical top-of-the-barrier FET model, and a spin dependent contact resistance model derived from, we explore the operation of a spin-MOSFET that utilizes such ferromagnetic semiconductors as channel materials, in addition to ferromagnetic source/drain contacts.

  3. IWCN 2021: Electronic States in 4H-SiC MOS Inversion Layers Considering Crystal Structure Using Empirical Pseudopotential Method

    15 Jul 2021 | | Contributor(s):: Sachika Nagamizo, Hajime Tanaka, Nobuya Mori

    In this study, to analyze the electronic states in 4H-SiC MOS inversion layers taking account of this feature, we described the crystal structure of 4H-SiC including the internal channel space using the empirical pseudopotential method, and we calculated the electronic states in the triangular...

  4. IWCN 2021: Computational Research of CMOS Channel Material Benchmarking for Future Technology Nodes: Missions, Learnings, and Remaining Challenges

    15 Jul 2021 | | Contributor(s):: raseong kim, Uygar Avci, Ian Alexander Young

    In this preentation, we review our journey of doing CMOS channel material benchmarking for future technology nodes. Through the comprehensive computational research for past several years, we have successfully projected the performance of various novel material CMOS based on rigorous physics...

  5. IWCN 2021: Ab initio Quantum Transport Simulation of Lateral Heterostructures Based on 2D Materials: Assessment of the Coupling Hamiltonians

    14 Jul 2021 | | Contributor(s):: Adel Mfoukh, Marco Pala

    Lateral heterostructures based on lattice-matched 2D materials are a promising option to design efficient electron devices such as MOSFETs [1], tunnel-FETs [2] and energy-filtering FETs [3]. In order to rigorously describe the transport through such heterostructures, an ab-initio approach based...

  6. MOSFET Design

    12 Jan 2021 | | Contributor(s):: Stella Quinones, Jose Valdez

    A series of homework assignments were created to introduce senior level undergraduate Electrical and Computer Engineering students to the design of MOSFETs by combining calculations of MOSFET related design parameters for a set of doping and oxide thickness values with the analysis of MOSFET...

  7. Compact NEGF-Based Solver for Double-Gate MOSFETs

    17 Nov 2020 | | Contributor(s):: Fabian Hosenfeld, Alexander Kloes

    Fast simulation of the DC current in a nanoscale double-gate MOSFET including thermionic emission and source-to-drain tunneling current.

  8. Zain Mansoor

    https://nanohub.org/members/304736

  9. Chapter 1: A Primer on the MOSFet Simulator on nanoHUB.org

    19 Mar 2020 | | Contributor(s):: Abdussamad Ahmed Muntahi, Dragica Vasileska, Shaikh S. Ahmed

    The MOSFet simulator on nanoHUB.org (http://nanohub.org/resources/mosfet) simulates the equilibrium electrostatics and non-equilibrium current-voltage (I-V) characteristics of i) bulk, ii) dual-gate, and iii) SOI based field effect transistors. In this chapter, we will describe: i) the structure...

  10. Bhavya Bhardwaj

    https://nanohub.org/members/265122

  11. ABACUS—Introduction to Semiconductor Devices

    When we hear the term semiconductor device, we may think first of the transistors in PCs or video game consoles, but transistors are the basic component in all of the electronic devices we use in...

    https://nanohub.org/wiki/EduSemiconductor2

  12. Neilalohith Sharma

    https://nanohub.org/members/257041

  13. Windows based Interactive tool for the simulation of the MOS electrostatics

    26 Jun 2019 | | Contributor(s):: Biswajeet Sahoo

    This is a tool to simulate the MOS electrostatics. It includes the simulation of  2 terminal, 3 terminal and 4 terminal MOSFET. Everything is done for both nMOS and pMOS. This tool is designed to give users an interactive visual representation of how a MOSFET would work...

  14. Windows based Interactive tool for the simulation of the MOS electrostatics by varying the different parameters given in the sliders and input boxes

    26 Jun 2019 | | Contributor(s):: Biswajeet Sahoo

    This is a tool to simulate the MOS electrostatics. It includes the simulation of  2 terminal, 3 terminal and 4 terminal MOSFET. Everything is done for both nMOS and pMOS. This tool is designed to give users an interactive visual representation of how a MOSFET would work...

  15. Ubuntu based Interactive tool for the simulation of the MOS electrostatics

    26 Jun 2019 | | Contributor(s):: Biswajeet Sahoo

    This is a tool to simulate the MOS electrostatics. It includes the simulation of  2 terminal, 3 terminal and 4 terminal MOSFET. Everything is done for both nMOS and pMOS. This tool is designed to give users an interactive visual representation of how a MOSFET would work under...

  16. MOS Simulator

    25 Jun 2019 | | Contributor(s):: Biswajeet Sahoo

    National Institute of Technology,Rourkela. This is an Interactive tool for the simulation of the MOS electrostatics by varying the different parameters given in the sliders and input boxes

  17. Franco Vera

    Franco Vera is a third year undergraduate at the University of Florida studying Materials Engineering with a focus on Electronic Materials. He is Currently working under Dr. Nancy Ruzycki to create...

    https://nanohub.org/members/230324

  18. Ardinc Edis

    https://nanohub.org/members/224255

  19. MUHAMMAD HUSSAIN

    https://nanohub.org/members/219790

  20. Stephen Remillard

    https://nanohub.org/members/202557