Tags: nanowires

Description

A nanowire is a nanostructure, with the diameter of the order of a nanometer. Alternatively, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length. At these scales, quantum mechanical effects are important.

Learn more about quantum dots from the many resources on this site, listed below. More information on Nanowires can be found here.

All Categories (1-20 of 133)

  1. Optical Properties of Single Coaxial Nanowires -LDOS and Purcell Factor

    02 Oct 2018 | Contributor(s):: Sulaiman Abdul-Hadi, Amartya Dutta, Katherine Hansen, Chen Yang

    Computes LDOS and Purcell Factor of a single nanowire with up to 2 shell layers using Mie-formalism

  2. OMEN

    For now this page is a rather empty place holder for references on nanoHUB to the OMEN tool. There is a more complete OMEN web page that is maintained by the Nanoelectronic Modeling Group of Prof....

    https://nanohub.org/wiki/OMEN

  3. Electron Transport in Schottky Barrier CNTFETs

    24 Oct 2017 | | Contributor(s):: Igor Bejenari

    A given review describes models based on Wentzel-Kramers-Brillouin approximation, which are used to obtain I-V characteristics for ballistic CNTFETs with Schottky-Barrier (SB) contacts. The SB is supposed to be an exponentially or linearly decaying function along the channel. The ...

  4. Adrian Suteu

    Source Graphene is the first based Romanian company focused on producing and supplying graphene oxide in water dispersion. Source Graphene has the capacity to obtain high, cost effective amounts of...

    https://nanohub.org/members/175145

  5. Quantum Coherent Transport in Atoms & Electrons

    21 Jun 2017 | | Contributor(s):: Yong P. Chen

    I will discuss some recent experimental examples from my lab studying quantum coherent transport and interferometry in electrons as well as cold atoms.   For example, phase coherent electron transport and interference around a cylinder realized in a nanowire of topological insulator...

  6. Building a Topological Quantum Computer 101

    20 Jun 2017 | | Contributor(s):: Michael Freedman

    Michael Freeman shares his perspective on how we should approach building a quantum computer, starting with the mathematical roots and moving through the physics to concrete engineering and materials growth challenges on which success will hinge. He will then discuss a new, enhanced,...

  7. jesus alexis Gonzalez

    https://nanohub.org/members/161639

  8. Al-Amin Sheikh

    https://nanohub.org/members/160887

  9. Piezo Nanomaterials and Green Energy

    19 Oct 2016 | | Contributor(s):: Rusen Yang

    This presentation will introduce the fundamental principle of nanogenerator and its potential applications.

  10. Chowdhury, Prodipto

    https://nanohub.org/members/152180

  11. Xiaohui Xu

    https://nanohub.org/members/149988

  12. Modeling Quantum Acceleration (Multi-Band Drift) of Bloch Waves in Nanowires

    24 Mar 2016 | | Contributor(s):: Raghuraj Hathwar, marco saraniti, Stephen M. Goodnick

    IWCE 2015 presentation.  Abstract and more information to be added at a later date.

  13. E304 L4.2.2: Nanomaterials - Nanostrucutes (dots, wires)

    18 Mar 2016 |

  14. Magnetic Nanowires: Revolutionizing Hard Drives, Random Access Memory, & Cancer Treatment

    18 Feb 2016 | | Contributor(s):: Beth Stadler

    This talk will reveal synthesis secrets for nm-control of layer thicknesses, even for difficult alloys, which has enabled studies of magnetization reversal, magneto-elasticity, giant magnetoresistance, and spin transfer torqueswitching. These nanowires will mitigate the ITRS Roadmap’s...

  15. Photonic Quantum Computation & Quantum Simulation

    11 Feb 2016 | | Contributor(s):: Philip Walther

    The advantages of the photons makes optical quantum system ideally suited for fundamental quantum physics experiments and a variety of applications in quantum information processing. Here I will briefly review privacy-preserving photonic quantum cloud computing, where quantum information is...

  16. Anisotropic Schrödinger Equation Quantum Corrections for 3D Monte Carlo Simulations of Nanoscale Multigate Transistors

    05 Jan 2016 | | Contributor(s):: Karol Kalna, Muhammad Ali A. Elmessary, Daniel Nagy, Manuel Aldegunde

    IWCE 2015 presentation. We incorporated anisotropic 2D Schrodinger equation based quantum corrections (SEQC) that depends on valley orientation into a 3D Finite Element (FE) Monte Carlo (MC) simulation toolbox. The MC toolbox was tested against experimental ID-VG characteristics of the 22 nm gate...

  17. VINUTH NAGENDRA

    https://nanohub.org/members/134917

  18. Phonon Interactions in Single-Dopant-Based Transistors: Temperature and Size Dependence

    25 Nov 2015 | | Contributor(s):: Marc Bescond, Nicolas Cavassilas, Salim Berrada

    IWCE 2015 presentation. in this work we investigate the dependence of electron-phonon scattering in single dopant-based nanowire transistor with respect to temperature and dimensions. we use a 3d real-space non-equilibrium green': ; s function (negf) approach where electron-phonon...

  19. Mode Space Tight Binding Model for Ultra-Fast Simulations of III-V Nanowire MOSFETs and Heterojunction TFETs

    13 Nov 2015 | | Contributor(s):: Aryan Afzalian, Jun Huang, Hesameddin Ilatikhameneh, Santiago Alonso Perez Rubiano, Tillmann Christoph Kubis, Michael Povolotskyi, Gerhard Klimeck

    IWCE 2015 presentation.  we explore here the suitability of a mode space tight binding algorithm to various iii-v homo- and heterojunction nanowire devices. we show that in iii-v materials, the number of unphysical modes to eliminate is very high compared to the si case previously reported...

  20. NEMO5: Why must we treat topological insulator nanowires atomically?

    15 Oct 2015 | | Contributor(s):: Fan Chen, Michael J. Manfra, Gerhard Klimeck, Tillmann Christoph Kubis

    IWCE 2015 presentation.  Abstract and more information to be added at a later date.