Tags: Periodic Potential Lab

Description

Periodic Potential Lab - New Interactive Version

Periodic Potential Lab solves the time-independent Schroedinger Equation in a 1-D spatial potential variation. The user can interactively with a single click explore the consequences of different confinement potentials such as square well, harmonic oscillator, or Coulombic confinement etc. The dispersion can be viewed side-by-side with the confinement potential and the associated wavefunctions. The user can visualize the allowed and forbidden bands, plot the bands in a compact and an expanded zone, and compare the results against a simple effective mass parabolic band.

Periodic Potential Lab - New Interactive Version

All Categories (1-16 of 16)

  1. ABACUS Tool Suite and Bandstructure and Band Models (Fall 2023)

    Online Presentations | 22 Aug 2023 | Contributor(s):: Gerhard Klimeck

    In the third session, Dr. Klimeck will give a brief overview of ABACUS and demonstrate several bandstructure tools. With these, students can explore the Standard Periodic Potential aka Kronig-Penney model as well as bandstructure formation by transmission through finite barriers....

  2. ABACUS Bandstructure Models (Spring 2022)

    Online Presentations | 05 May 2022 | Contributor(s):: Gerhard Klimeck

    In the third session, Dr. Klimeck will give a brief overview of ABACUS and demonstrate several bandstructure tools. With these, students can explore the Standard Periodic Potential aka Kronig-Penney model as well as bandstructure formation by transmission through finite barriers....

  3. ABACUS Bandstructure Models (Winter 2021)

    Online Presentations | 21 Dec 2021 | Contributor(s):: Gerhard Klimeck

    In the third session, Dr. Klimeck will give a brief overview of ABACUS and demonstrate several bandstructure tools. With these, students can explore the Standard Periodic Potential aka Kronig-Penney model as well as bandstructure formation by transmission through finite barriers...

  4. Periodic Potential Lab - Kronig Penney Model - New Interactive Version

    Tools | 23 Aug 2019 | Contributor(s):: Daniel Mejia, Gerhard Klimeck

    Periodic Potential Lab - Kronig Penney Model - Interactively explore bandstructure and wavefunctions with different potentials

  5. ECE 595E Lecture 25: Further Bandstructure Simulation Tools

    Online Presentations | 21 Mar 2013 | Contributor(s):: Peter Bermel

    Outline:Recap from WednesdayPeriodic Potential LabBasic principlesInput InterfaceExemplary OutputsCNTbandsBasic principlesInput InterfaceExemplary Outputs 

  6. Periodic Potential Lab Learning Materials

    Wiki

    By completing the Periodic Potential Lab in ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors, users will be able a) to understand the Kronig-Penney model and...

    https://nanohub.org/wiki/PPLPage

  7. Periodic Potential Lab Worked Examples

    Teaching Materials | 11 Apr 2011 | Contributor(s):: SungGeun Kim, Abhijeet Paul, Gerhard Klimeck, Lynn Zentner, Benjamin P Haley

    Worked Examples for Periodic Potential Lab

  8. ABACUS: Test for Periodic Potential Lab

    Teaching Materials | 05 Aug 2010 | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    The objective of this test is to give an idea to a self-learning students or to instructors in the case this test is used in a classroom the level of understanding of this topic when students have gone through the learning material, worked exercises and have completed the assignments and the...

  9. Periodic Potentials Exercise

    Teaching Materials | 16 Jun 2010 | Contributor(s):: Gerhard Klimeck, Parijat Sengupta, Dragica Vasileska

    In this exercise, various calculations of the electronic band structure of a one-dimensional crystal are performed with the Kronig-Penney (KP) model. This model has an analytical solution and therefore allows for simple calculations. More realistic models always require extensive numeric...

  10. Comparison of PCPBT Lab and Periodic Potential Lab

    Presentation Materials | 10 Aug 2009 | Contributor(s):: Abhijeet Paul, Samarth Agarwal, Gerhard Klimeck, Junzhe Geng

    This small presentation provides information about the comparison performed for quantum wells made of GaAs and InAs in two different tools. This has been done to benchmark the results from completely two different sets of tools and validate the obtained results. In this presentation we provide...

  11. Periodic Potential Lab Demonstration: Standard Kroenig-Penney Model

    Animations | 11 Jun 2009 | Contributor(s):: Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation of a 1D square well using the Periodic Potential Lab. The calculated output includes plots of the allowed energybands, a table of the band edges and band gaps, plots of reduced and expanded dispersion relations, and plots comparing the dispersion relations to those...

  12. Periodic Potential Lab: First-Time User Guide

    Teaching Materials | 07 Jun 2009 | Contributor(s):: Abhijeet Paul, Benjamin P Haley, Gerhard Klimeck, SungGeun Kim, Lynn Zentner

    This document provides guidance to first-time users of the Periodic Potential Lab tool. It offers basic information about solutions to the Schröedinger Equation in case of periodic potential in 1 dimension (1D). This document also contains suggested exercises to help users run the tool and...

  13. Homework Assignment: Periodic Potentials

    Teaching Materials | 31 Jan 2008 | Contributor(s):: David K. Ferry

    Using the Periodic Potential Lab on nanoHUB determine the allowed bands for an energy barrier of 5 eV, a periodicity W = 0.5nm, and a barrier thickness of 0.1nm. How do these bands change if the barrier thickness is changed to 0.2 nm?

  14. Semiconductor Device Education Material

    Teaching Materials | 28 Jan 2008 | Contributor(s):: Gerhard Klimeck

    This page has moved to "a Wiki page format" When we hear the words, semiconductor device, we may think first of the transistors in PCs or video game consoles, but transistors are the basic component in all of the electronic devices we use in our daily lives. Electronic systems are...

  15. Periodic Potential Lab

    Tools | 19 Jan 2008 | Contributor(s):: Abhijeet Paul, Junzhe Geng, Gerhard Klimeck

    Solve the time independent schrodinger eqn. for arbitrary periodic potentials

  16. SungGeun Kim

    SungGeun recieved bachelor's degree from Ajou University in 2001 in electrical engineering and got master's degree at GIST(Gwangju Institute of Science and Technology) in 2005. He studied on the...

    https://nanohub.org/members/22824