Tags: nanoelectronics

Description

This list is a starting point for nanoHUB users interested in the broad area of nanoelectronics. It is a comprehensive list of available resources. More information on Nanoelectronics can be found here.

Papers (1-20 of 95)

  1. A CNTFET-Based Nanowired Induction Two-Way Transducers

    05 Sep 2012 | | Contributor(s):: Rostyslav Sklyar

    A complex of the induction magnetic field two-way nanotransducers of the different physical values for both the external and implantable interfaces in a wide range of arrays are summarized. Implementation of the nanowires allows reliable transducing of the biosignals' partials and bringing of...

  2. A Quantum Mechanical Analysis of Channel Access Geometry and Series Resistance in Nanoscale Transistors

    19 Oct 2006 | | Contributor(s):: Ramesh Venugopal, Sebastien Goasguen, Supriyo Datta, Mark Lundstrom

    In this paper, we apply a two-dimensional quantum mechanical simulation scheme to study the effect of channel access geometries on device performance. This simulation scheme solves the non-equilibrium Green’s function equations self-consistently with Poisson’s equation and treats the effect of...

  3. A Three-Dimensional Quantum Simulation of Silicon Nanowire Transistors with the Effective-Mass Approximation

    30 Oct 2006 | | Contributor(s):: Jing Wang, POLIZZI ERIC, Mark Lundstrom

    The silicon nanowire transistor (SNWT) is a promising device structure for future integrated circuits, and simulations will be important for understanding its device physics and assessing its ultimate performance limits. In this work, we present a three-dimensional quantum mechanical simulation...

  4. AFRL RXBT Publication List

    11 Jan 2012 | | Contributor(s):: Andrey A Voevodin

    List of papers, book chapters, conference presentations, and other publication materials from Thermal Sciences and Materials Branch, Materials and Manufacturing Directorate, AFRL

  5. An Overview of Fourth Fundamental Circuit Element- 'The Memristor'

    21 Jan 2013 | | Contributor(s):: Tukaram Dattatray Dongale

    The fourth fundamental circuit element- Memristor, was mathematically predicted by Prof. Leon Chua in his seminal research paper in IEEE Transaction on Circuit Theory on the symmetric background. After four decade in 2008, researchers at the Hewlett–Packard (HP) laboratories reported the...

  6. Anisotropic magnetoresistance in colossal magnetoresistive La1-xSrxMnO3 thin films

    03 Sep 2010 | | Contributor(s):: Jeng-Bang (Tony) Yau

    We report on magnetic field and temperature dependent measurements of the anisotropic magnetoresistance (AMR) in epitaxial La1-xSrxMnO3 (LSMO) thin flms. While in 3d ferromagnetic alloys increasing the magnetization, either by reducing the temperature or increasing the magnetic field, increases...

  7. Application of the Keldysh Formalism to Quantum Device Modeling and Analysis

    14 Jan 2008 | | Contributor(s):: Roger Lake

    The effect of inelastic scattering on quantum electron transport through layered semi-conductor structures is studied numerically using the approach based on the non-equilibrium Green's function formalism of Keldysh, Kadanoff, and Baym. The Markov assumption is not made, and the energy coordinate...

  8. Atomistic Electronic Structure Calculations of Unstrained Alloyed Systems Consisting of a Million Atoms

    14 Jan 2008 | | Contributor(s):: Gerhard Klimeck, Timothy Boykin

    The broadening of the conduction and valence band edges due to compositional disorder in alloyed materials of finite extent is studied using an s p3 s ∗ tight binding model. Two sources of broadening due to configuration and concentration disorder are identified. The concentrational disorder...

  9. Bandgap Manipulation of Armchair Graphene nanoribbon

    01 Sep 2020 | | Contributor(s):: Lance Fernandes

    Bandgap Manipulation is very important for various applications. Optical Devices need smaller Bandgap where as Diode's need larger Bandgap. Armchair graphene Nanoribbon (AGNR) has a special property where if the numbers of atoms are multiple of three or multiple of three plus one, they are...

  10. Carbon Nanotube Electronics: Modeling, Physics, and Applications

    28 Jun 2013 | | Contributor(s):: Jing Guo

    In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias transport can be nearly ballistic across distances of several hundred nanometers. Deposition of high-k gate...

  11. Carbon Nanotube Electronics: Modeling, Physics, and Applications

    30 Oct 2006 | | Contributor(s):: Jing Guo

    In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias transport can be nearly ballistic across distances of several hundred nanometers. Deposition of high-κ...

  12. Chapter 1: A Primer MOSCap Tool on nanoHUB.org

    19 Mar 2020 | | Contributor(s):: Abdussamad Ahmed Muntahi, Shaikh S. Ahmed

    The primary reason to study MOS (metal-oxide-semiconductor) capacitors is to understand the principle of operation as well as become familiar with some of the routinely used characterization techniques for MOS field effect transistors (MOSFETs). The MOSCap tool on nanoHUB.org simulates the...

  13. Chapter 1: A Primer on the MOSFet Simulator on nanoHUB.org

    19 Mar 2020 | | Contributor(s):: Abdussamad Ahmed Muntahi, Dragica Vasileska, Shaikh S. Ahmed

    The MOSFet simulator on nanoHUB.org (http://nanohub.org/resources/mosfet) simulates the equilibrium electrostatics and non-equilibrium current-voltage (I-V) characteristics of i) bulk, ii) dual-gate, and iii) SOI based field effect transistors. In this chapter, we will describe: i) the structure...

  14. Computational and Experimental Study of Transport in Advanced Silicon Devices

    28 Jun 2013 | | Contributor(s):: Farzin Assad

    In this thesis, we study electron transport in advanced silicon devices by focusing on the two most important classes of devices: the bipolar junction transistor (BJT) and the MOSFET. In regards to the BJT, we will compare and assess the solutions of a physically detailed microscopic model to...

  15. Consistent Parameter Set for an Ensemble Monte Carlo Simulation of 4H-SiC

    01 Jul 2008 | | Contributor(s):: Dragica Vasileska

    A consistent parameter set is presented for Ensemble Monte Carlo simulation that simultaneously reproduces the experimental low-field and high-field characteristic transport parameters of 4H SiC.D. Vasileska and S. M. Goodnick, Computational Electronics, Morgan and Claypool, 2006.Freescale...

  16. Coupled Effect of Strain and Magnetic Field on Electronic Bandstructure of Graphene

    03 Dec 2010 | | Contributor(s):: yashudeep singh

    We explore the possibility of coupling between planar strain and perpendicular magnetic field on electronic bandstructure of graphene. We study uni-axially, bi-axially and shear strained graphene under magnetic field. In line with Rammal’s formalism using nearest neighbor tight binding scheme we...

  17. Device Physics and Simulation of Silicon Nanowire Transistors

    27 Jun 2013 | | Contributor(s):: Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

  18. Device Physics and Simulation of Silicon Nanowire Transistors

    28 Sep 2006 | | Contributor(s):: Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

  19. Device Physics and Simulation of Silicon Nanowire Transistors

    20 May 2006 | | Contributor(s):: Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

  20. Device Physics Studies of III-V and Silicon MOSFETS for Digital Logic

    25 Jun 2013 | | Contributor(s):: Himadri Pal

    III-V's are currently gaining a lot of attraction as possible MOSFET channel materials due to their high intrinsic mobility. Several challenges, however, need to be overcome before III-V's can replace silicon (Si) in extremely scaled devices. The effect of low density-of-states of III-V materials...