Engineering Nanomedical Systems
Category
Published on
Abstract
Conventional medicine is reactive to tissue-level problems that are discovered at the symptomatic level. Nanomedicine has the promise to diagnose and treat problems at the molecular level inside single-cells, far earlier and prior to the appearance of traditional symptoms. Beyond the obvious application of bionanotechnology to medicine, the approach is fundamentally different.
Nanomedicine, as a nanotechnology approach, is a "bottoms up" rather than "top down" approach to medicine - treating cells one cell at a time. Nanomedicine is a form of regenerative medicine, not just a killing of diseased cells whereby tissues and organs that are repairable can be "regenerated" through repair mechanisms. It typically combines use of molecular biosensors to provide for feedback control of treatment and repair on a single-cell basis. Feedback control is a common feature of engineered systems, but relatively foreign to medicine.
This tutorial will cover general problems and approaches to the design of engineered nanomedical systems. An example to be covered is the engineering design of programmable multilayered nanoparticles (PMNP) to control a multi-sequence process of targeting to rare cells in-vivo, re-targeting to intracellular sites, and controlling of final gene/drug delivery. Therapeutic genes can be manufactured inside living cells as a "nanofactory" under the control of these molecular biosensors providing feedback- controlled single cell medicine.
Nanomedicine, as a nanotechnology approach, is a "bottoms up" rather than "top down" approach to medicine - treating cells one cell at a time. Nanomedicine is a form of regenerative medicine, not just a killing of diseased cells whereby tissues and organs that are repairable can be "regenerated" through repair mechanisms. It typically combines use of molecular biosensors to provide for feedback control of treatment and repair on a single-cell basis. Feedback control is a common feature of engineered systems, but relatively foreign to medicine.
This tutorial will cover general problems and approaches to the design of engineered nanomedical systems. An example to be covered is the engineering design of programmable multilayered nanoparticles (PMNP) to control a multi-sequence process of targeting to rare cells in-vivo, re-targeting to intracellular sites, and controlling of final gene/drug delivery. Therapeutic genes can be manufactured inside living cells as a "nanofactory" under the control of these molecular biosensors providing feedback- controlled single cell medicine.
Bio
Dr. Leary moved to Purdue on July 1, 2005 and became the SVM (School of Veterinary Medicine) Endowed Professor of Nanomedicine and a tenured full professor in the Department of Basic Medical Sciences and the Weldon School of Biomedical Engineering. He is also a Member of the Bindley Biosciences Center, Birck Nanotechnology Center, and the Oncological Science at Discovery Park where his laboratories are located. He is also a Member of the Purdue Cancer Center.
Sponsored by
NCN@Purdue Student Leadership Team Network for Computational Nanotechnology The Institute for Nanoelectronics and Computing
Cite this work
Researchers should cite this work as follows:
Time
Location
EE 317, Purdue University, West Lafayette, IN