Tags: device modelling and simulation

All Categories (121-140 of 147)

  1. Theodore Chandra

    https://nanohub.org/members/45368

  2. Suseendran Jayachandran

    https://nanohub.org/members/41892

  3. Simulation of laser devices with ActiveMedia nanophotonics tool (ACME NPDS)

    This tutorial is intended to demonstrate how to build a device and analyze its optical properties and lasing behavior.

    https://nanohub.org/wiki/SimulationoflaserdeviceswithActiveMediananophotonicstoolACMENPDS

  4. Illinois ECE 440 Solid State Electronic Devices, Lecture 20: P-N Diode in Reverse Bias

    18 Nov 2009 | | Contributor(s):: Eric Pop

    Recap diode (forward, zero, reverse) bias diagrams.Recap some of the equations.

  5. Antal Ürmös

    https://nanohub.org/members/37332

  6. Tutorial for PADRE Based Simulation Tools

    10 Aug 2009 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This tutorial is intended for first time and medium level users of PADRE-based simulation modules installed on the nanohub. It gives clear overview on the capabilities of each tool with emphasis to most important effects occuring in nano-scale devices.

  7. Tarek M. Abdolkader

    Tarek M. Abdolkader received BS degree inElectrical Engineering (Electronics and Communications) from the faculty ofEngineering, Ain-Shams university, Cairo in 1992, another BS degree in...

    https://nanohub.org/members/36289

  8. hitesh kumar sahoo

    https://nanohub.org/members/36038

  9. Illinois ECE 440 Solid State Electronic Devices, Lecture 7: Temperature Dependence of Carrier Concentrations

    30 Dec 2008 | | Contributor(s):: Eric Pop

  10. Illinois ECE 440 Solid State Electronic Devices, Lecture 6: Doping, Fermi Level, Density of States

    04 Dec 2008 | | Contributor(s):: Eric Pop, Umair Irfan

  11. Real space first-principles semiempirical pseudopotentials for Fe/MgO/Fe

    03 Dec 2008 | | Contributor(s):: Kirk Bevan

    A set of semiempirical pseudopotentials for the atomistic modeling of Fe/MgO/Fe tunnel junctions. See the attached document for a full description of their derivation and the modeling approach.Document Abstract:We present a real space density functional theory (DFT) localized basis set...

  12. ECE 612 Lecture 23: RF CMOS

    02 Dec 2008 | | Contributor(s):: Mark Lundstrom

    Outline: 1) Introduction,2) Small signal model,3) Transconductance,4) Self-gain,5) Gain bandwidth product,6) Unity power gain,7) Noise, mismatch, linearity…,8) Examples

  13. Illinois ECE 440 Solid State Electronic Devices, Lecture 1 Introduction

    26 Nov 2008 | | Contributor(s):: Eric Pop

    Introduction to Solid State Electronic Devices

  14. From density functional theory to defect level in silicon: Does the “band gap problem” matter?

    01 Oct 2008 | | Contributor(s):: Peter A. Schultz

    Modeling the electrical effects of radiation damage in semiconductor devices requires a detailed description of the properties of point defects generated during and subsequent to irradiation. Such modeling requires physical parameters, such as defect electronic levels, to describe carrier...

  15. Gokula Kannan

    Gokula Kannan received his B.E in Electronics and Communication (Anna University, India) in 2007 and the M.S degree in Electrical Engineering from Arizona State University in 2010. He is presently...

    https://nanohub.org/members/30685

  16. Illinois ECE 440 Solid State Electronic Devices, Lecture 3: Energy Bands, Carrier Statistics, Drift

    19 Aug 2008 | | Contributor(s):: Eric Pop

    Discussion of scaleReview of atomic structureIntroduction to energy band model

  17. Illinois ECE 440: Solid State Electronic Devices

    18 Aug 2008 | | Contributor(s):: Eric Pop

    The goals of this course are to give the student an understanding of the elements of semiconductor physics and principles of semiconductor devices that (a) constitute the foundation required for an electrical engineering major to take follow-on courses, and (b) represent the essential basic...

  18. Illinois ECE 440 Solid State Electronic Devices, Lecture 2: Crystal Lattices

    14 Aug 2008 | | Contributor(s):: Eric Pop

    Crystal Lattices:Periodic arrangement of atomsRepeated unit cells (solid-state)Stuffing atoms into unit cellsDiamond (Si) and zinc blende (GaAs)crystal structuresCrystal planesCalculating densities

  19. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    16 Jul 2008 | | Contributor(s):: Xufeng Wang, Daniel Mejia, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor devices

  20. BJT Lab

    06 Feb 2008 | | Contributor(s):: Saumitra Raj Mehrotra, Abhijeet Paul, Gerhard Klimeck, Dragica Vasileska, Gloria Wahyu Budiman

    This tool simulates a Bipolar Junction Transistor (BJT) using a 2D mesh. Powered by PADRE.