Tags: quantum dots

Description

Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

Animations (1-8 of 8)

  1. 3D wavefunctions

    12 Apr 2010 | | Contributor(s):: Saumitra Raj Mehrotra, Gerhard Klimeck

    In quantum mechanics the time-independent Schrodinger's equation can be solved for eigenfunctions (also called eigenstates or wave-functions) and corresponding eigenenergies (or energy levels) for a stationary physical system. The wavefunction itself can take on negative and positive values and...

  2. Quantum Dot Lab Demonstration: Pyramidal Qdots

    11 Jun 2009 | | Contributor(s):: Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation and analysis of a pyramid-shaped quantum dot using Quantum Dot Lab. Several powerful analytic features of this tool are demonstrated.

  3. Quantum Dot Wave Function (Quantum Dot Lab)

    02 Feb 2011 | | Contributor(s):: Gerhard Klimeck, David S. Ebert, Wei Qiao

    Electron density of an artificial atom. The animation sequence shows various electronic states in an Indium Arsenide (InAs)/Gallium Arsenide (GaAs) self-assembled quantum dot.

  4. Quantum Dot Wave Function (still image)

    31 Jan 2011 | | Contributor(s):: Gerhard Klimeck, David S. Ebert, Wei Qiao

    Electron density of an artificial atom. The image shown displays the excited electron state in an Indium Arsenide (InAs) / Gallium Arsenide (GaAs) self-assembled quantum dot.

  5. Quantum-dot Cellular Automata (QCA) - Logic Gates

    03 Feb 2006 | | Contributor(s):: John C. Bean

    An earlier animation described how "Quantum-dot Cellular Automata" (QCAs) could serve as memory cells and wires. This animation contnues the story by describing how QCAs can be made into MAJORITY, OR, AND, and INVERTER logic gates.

  6. Quantum-dot Cellular Automata (QCA) - Memory Cells

    03 Feb 2006 | | Contributor(s):: John C. Bean

    Scientists and engineers are looking for completely different ways of storing and analyzing information. Quantum-dot Cellular Automata are one possible solution. In computers of the future, transistors may be replaced by assemblies of quantum dots called Quantum-dot Cellular Automata (QCAs).This...

  7. Self-Assembled Quantum Dot Structure (pyramid)

    01 Feb 2011 | | Contributor(s):: Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    Pyramidal InAs Quantum dot. The quantum dot is 27 atomic monolayers wide at the base and 15 atomic monolayers tall.

  8. Self-Assembled Quantum Dot Wave Structure

    31 Jan 2011 | | Contributor(s):: Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    A 20nm wide and 5nm high dome shaped InAs quantum dot grown on GaAs and embedded in InAlAs is visualized.