Tags: quantum dots

Description

Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

Resources (41-60 of 114)

  1. Nano Carbon: From ballistic transistors to atomic drumheads

    Online Presentations | 14 May 2008 | Contributor(s):: Paul L. McEuen

    Carbon takes many forms, from precious diamonds to lowly graphite. Surprisingly, it is the latter that is the most prized by nano physicists. Graphene, a single layer of graphite, can serve as an impenetrable membrane a single atom thick. Rolled up into a nanometer-diameter cylinder--a carbon...

  2. Nanobiotechnology – a different perspective

    Online Presentations | 22 Jul 2008 | Contributor(s):: Murali Sastry

    The study of the synthesis, exotic properties, assembly/packaging and potential commercial application of nanomaterials is an extremely important topic of research that is expected to have far-reaching global impact. The focus of my talk will be on an emerging branch of nanotechnology that...

  3. Nanoelectronic Modeling Lecture 28: Introduction to Quantum Dots and Modeling Needs/Requirements

    Online Presentations | 20 Jul 2010 | Contributor(s):: Gerhard Klimeck

    This presentation provides a very high level software overview of NEMO1D.Learning Objectives:This lecture provides a very high level overview of quantum dots. The main issues and questions that are addressed are:Length scale of quantum dotsDefinition of a quantum dotQuantum dot examples and...

  4. Nanoelectronic Modeling Lecture 29: Introduction to the NEMO3D Tool

    Online Presentations | 04 Aug 2010 | Contributor(s):: Gerhard Klimeck

    This presentation provides a very high level software overview of NEMO3D. The items discussed are:Modeling Agenda and MotivationTight-Binding Motivation and basic formula expressionsTight binding representation of strainSoftware structureNEMO3D algorithm flow NEMO3D parallelization scheme –...

  5. Nanoelectronic Modeling Lecture 31a: Long-Range Strain in InGaAs Quantum Dots

    Online Presentations | 04 Aug 2010 | Contributor(s):: Gerhard Klimeck

    This presentation demonstrates the importance of long-range strain in quantum dotsNumerical analysis of the importance of the buffer around the central quantum dot - local band edges – vertical and horizontal extension of the bufferControlled overgrowth can tune the electron energies in the...

  6. Nanoelectronic Modeling Lecture 32: Strain Layer Design through Quantum Dot TCAD

    Online Presentations | 04 Aug 2010 | Contributor(s):: Gerhard Klimeck, Muhammad Usman

    This presentation demonstrates the utilization of NEMO3D to understand complex experimental data of embedded InAs quantum dots that are selectively overgrown with a strain reducing InGaAs layer. Different alloy concentrations of the strain layer tune the optical emission and absorption wavelength...

  7. Nanoelectronic Modeling Lecture 34: Alloy Disorder in Quantum Dots

    Online Presentations | 05 Aug 2010 | Contributor(s):: Gerhard Klimeck, Timothy Boykin, Chris Bowen

    This presentation discusses the consequences of Alloy Disorder in strained InGaAs Quantum Dots Reminder of the origin of bandstructure and bandstructure engineeringWhat happens when there is disorder?Concept of disorder in the local bandstructureConfiguration noise, concentration noise,...

  8. Nanoelectronic Modeling: Exercises 1-3 - Barrier Structures, RTDs, and Quantum Dots

    Online Presentations | 27 Jan 2010 | Contributor(s):: Gerhard Klimeck

    Exercises:Barrier StructuresUses: Piece-Wise Constant Potential Barrier ToolResonant Tunneling DiodesUses: Resonant Tunneling Diode Simulation with NEGF • Hartree calculation • Thomas Fermi potentialQuantum DotsUses: Quantum Dot Lab • pyramidal dot

  9. Nanoelectronic Modeling: From Quantum Mechanics and Atoms to Realistic Devices

    Courses | 25 Jan 2010 | Contributor(s):: Gerhard Klimeck

    The goal of this series of lectures is to explain the critical concepts in the understanding of the state-of-the-art modeling of nanoelectronic devices such as resonant tunneling diodes, quantum wells, quantum dots, nanowires, and ultra-scaled transistors. Three fundamental concepts critical to...

  10. Nanoelectronic Modeling: Multimillion Atom Simulations, Transport, and HPC Scaling to 23,000 Processors

    Online Presentations | 07 Mar 2008 | Contributor(s):: Gerhard Klimeck

    Future field effect transistors will be on the same length scales as “esoteric” devices such as quantum dots, nanowires, ultra-scaled quantum wells, and resonant tunneling diodes. In those structures the behavior of carriers and their interaction with their environment need to be fundamentally...

  11. NanoElectronic MOdeling: NEMO

    Online Presentations | 20 Dec 2007 | Contributor(s):: Gerhard Klimeck

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of computational science and engineering.Novel nanoelectronic devices such as quantum dots, nanowires, and ultra-scaled...

  12. Nanomaterials: Quantum Dots, Nanowires and Nanotubes

    Online Presentations | 15 Jul 2005 | Contributor(s):: Timothy D. Sands

    What is a quantum dot? What is a nanowire? What is a nanotube? Why are these interesting and what are their potential applications? How are they made? This presentation is intended to begin to answer these questions while introducing some fundamental concepts such as wave-particle duality,...

  13. Nanoparticle Synthesis and Assembly for Biological Sensing

    Online Presentations | 25 Oct 2005 | Contributor(s):: Gil Lee

    Nanoparticles have unique physical and chemical properties that make them very useful for biological and chemical sensing. For example, colloidal gold has been used as an optical transducer for antibody based sensing for over twenty years and is the basis for a many of the point-of-use diagnostic...

  14. Nanoparticles in Biology and Materials: Engineering the Interface through Synthesis

    Online Presentations | 29 Jan 2007 | Contributor(s):: Vincent Rotello

    Monolayer-protected nanoparticles provide versatile tools for nanotechnology. In our research, we use these nanoparticles as building blocks for the creation of functional magnetic and electronic nanocomposite materials. Simultaneously, we are using these particles as scaffolds for biomolecular...

  15. Nanotechnology and Occupational Safety and Health: What are the Issues, What do we know, and What is NIOSH Doing

    Online Presentations | 21 Nov 2006 | Contributor(s):: Chuck L Geraci

    Nanotechnology and Occupational Safety and Health: What are the Issues, What do we know, and What is NIOSH Doing

  16. Nanotechnology Animation Gallery

    Teaching Materials | 20 Apr 2010 | Contributor(s):: Saumitra Raj Mehrotra, Gerhard Klimeck

    Animations and visualization are generated with various nanoHUB.org tools to enable insight into nanotechnology and nanoscience. Click on image for detailed description and larger image download. Additional animations are also...

  17. Nanotubes and Nanowires: One-dimensional Materials

    Online Presentations | 17 Jul 2006 | Contributor(s):: Timothy D. Sands

    What is a nanowire? What is a nanotube? Why are they interesting and what are their potential applications? How are they made? This presentation is intended to begin to answer these questions while introducing some fundamental concepts such as wave-particle duality, quantum confinement, the...

  18. NEMO 3D: Intel optimizations and Multiple Quantum Dot Simulations

    Online Presentations | 03 Aug 2006 | Contributor(s):: Anish Dhanekula, Gerhard Klimeck

    NEMO-3D is a nanoelectronic modeling tool that analyzes the electronic structure of nanoscopic devices. Nanoelectronic devices such as Quantum Dots (QDs) can contain millions of atoms,. Therefore, simulating their electronic structure, can take up to several days. In order to simulate and analyze...

  19. NEMO3D User Guide for Quantum Dot Simulations

    Papers | 29 Nov 2011 | Contributor(s):: M. Usman, Gerhard Klimeck

    NEMO 3D is a large and complex simulator; and understanding of its source code requires considerable knowledge of quantum mechanics, condensed matter theory, and parallel programming.

  20. NEMO5 Overview Presentation

    Online Presentations | 17 Jul 2012 | Contributor(s):: Tillmann Christoph Kubis, Michael Povolotskyi, Jean Michel D Sellier, James Fonseca, Gerhard Klimeck

    This presentation gives an overview of the current functionality of NEMO5.